Synthetic Metals最新文献

筛选
英文 中文
Drift-diffusion modeling of blue OLED degradation
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-24 DOI: 10.1016/j.synthmet.2024.117797
Adrian Pizano, Raju Lampande, Robert Cawthorn, Noel C. Giebink
{"title":"Drift-diffusion modeling of blue OLED degradation","authors":"Adrian Pizano,&nbsp;Raju Lampande,&nbsp;Robert Cawthorn,&nbsp;Noel C. Giebink","doi":"10.1016/j.synthmet.2024.117797","DOIUrl":"10.1016/j.synthmet.2024.117797","url":null,"abstract":"<div><div>Rapid degradation of blue organic light-emitting diodes (OLEDs) is an ongoing challenge for the display and lighting industry. Bimolecular exciton annihilation reactions are one of the leading causes of molecular degradation in these devices, but are so far quantified mostly by fitting data to simplified rate equation models that crudely approximate the exciton and charge carrier densities in the recombination zone while neglecting the other layers in the device entirely. Here, we implement a rigorous drift-diffusion-based degradation model and compare its luminance fade and voltage rise to that of a corresponding rate-based model for a prototypical exciton-polaron-based degradation scenario. We find that the luminance fade predicted by the rate model yields functionally similar, but quantitatively different results than the drift-diffusion simulation, though reasonable agreement can be achieved by using effective values for the annihilation rate coefficient and hot polaron degradation probability. Importantly, the drift-diffusion model indicates that trap state defects formed in the emissive layer lead to only a minor increase in voltage, whereas those formed in the transport layers lead to a larger increase that is on par with experiment. These results suggest that OLED luminance loss and voltage rise largely originate from different sets of defect states formed in the emissive and transport layers, respectively, and that rate model degradation parameters fit from experiment should be viewed as effective values that do not directly correspond to the rate of the actual microscale processes occurring in the device.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117797"},"PeriodicalIF":4.0,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO-NF/Graphene/Nafion as electrode platform for some pharmaceutical active ingredients sensor and energy storage applications ZnO-NF/石墨烯/Nafion作为一些药物活性成分传感器和储能应用的电极平台
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-23 DOI: 10.1016/j.synthmet.2024.117795
Nilufer Kocyigit , Sule Dinc Zor , Ozlem Yagci , Sefika Busra Uzuncam , Melih Besir Arvas
{"title":"ZnO-NF/Graphene/Nafion as electrode platform for some pharmaceutical active ingredients sensor and energy storage applications","authors":"Nilufer Kocyigit ,&nbsp;Sule Dinc Zor ,&nbsp;Ozlem Yagci ,&nbsp;Sefika Busra Uzuncam ,&nbsp;Melih Besir Arvas","doi":"10.1016/j.synthmet.2024.117795","DOIUrl":"10.1016/j.synthmet.2024.117795","url":null,"abstract":"<div><div>This paper presents a simultaneous sensor for the detection of paracetamol (PAR)and ibuprofen (IBU). The sensor is based on a ZnO nanoflower/Graphene/Nafion coated glassy carbon electrode (ZnO NF/GR/Nafion/GCE) and a supercapacitor electrode with the same electrode component. The morphological characterisation of the prepared sensor and supercapacitor electrode was conducted via scanning electron microscopy (SEM), structural characterisation by X-ray diffraction spectroscopy, chemical characterisation by Fourier transform infrared spectroscopy (FT-IR) and Raman analysis. The electroactivity and selectivity of the ZnO NF/GR/Nafion sensor platform towards IBU and PAR were simultaneously investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Electrochemical tests of the sensor were conducted in a three-electrode electrochemical system in 0.1 M B-R buffer (pH 4.0). The linear ranges of the ZnO NF/GR/Nafion sensor towards PAR and IBU were determined in the range of 1.0 and 1000.0 μM. The detection limits for PAR and IBU were calculated as 0.28 µM and 0.31 µM, respectively. In real sample analyses, the efficiency of the investigated sensor in different drug formulations was found to respond to PAR and IBU with high recovery (99.05 % and 103.35 %). The supercapacitor electrode was prepared by changing the same electrode component, amounts and ratios of the components. The performance of the supercapacitor electrode was investigated in the potential range from 0 V to 1.2 V in PVA-H<sub>2</sub>SO<sub>4</sub> electrolyte. The supercapacitor electrode demonstrated a specific capacitance of 488.1 F g<sup>−1</sup> at a scan rate of 5 mV s<sup>−1</sup> and a capacitance value of 405.5 F g<sup>−1</sup> at a current density of 7 mA.cm<sup>−2</sup>. In this study, the ZnO NF/GR/Nafion/GCE hybrid electrode produced is used as both sensor and supercapacitor electrode material and operates in dual mode. The production method is cheap and simple, and no additional modifications are needed in the production of electrode components. In this study, for the first time in the literature, the electrode material with ZnO NF/GR/Nafion/GCE component is used in the analysis of some pharmaceutical active ingredients and in supercapacitor applications.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117795"},"PeriodicalIF":4.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142743450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox-active phthalocyanine-based frameworks produced by pyrolysis: Promising electrode materials for low-cost potassium batteries 热解制备的氧化还原活性酞菁基框架:低成本钾电池极具前景的电极材料
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-22 DOI: 10.1016/j.synthmet.2024.117796
Elena V. Shchurik , Sergey G. Vasil’ev , Olga A. Kraevaya , Ivan S. Zhidkov , Alexander F. Shestakov , Chunwang Lv , Sergey M. Aldoshin , Pavel A. Troshin
{"title":"Redox-active phthalocyanine-based frameworks produced by pyrolysis: Promising electrode materials for low-cost potassium batteries","authors":"Elena V. Shchurik ,&nbsp;Sergey G. Vasil’ev ,&nbsp;Olga A. Kraevaya ,&nbsp;Ivan S. Zhidkov ,&nbsp;Alexander F. Shestakov ,&nbsp;Chunwang Lv ,&nbsp;Sergey M. Aldoshin ,&nbsp;Pavel A. Troshin","doi":"10.1016/j.synthmet.2024.117796","DOIUrl":"10.1016/j.synthmet.2024.117796","url":null,"abstract":"<div><div>In this manuscript, we present a scalable approach to the design of advanced organic redox-active materials by pyrolysis of simple low molecular weight precursors. A cascade of condensation reactions occurring under pyrolysis of 3,6-dihydroxyphthalodinitrile produced a covalent organic framework with phthalocyanine units. Spectroscopic characterization supported by DFT calculations revealed that the obtained material has a porous membrane-like structure, which is favorable for ionic transport. The potassium batteries using the designed organic redox-active material as a working electrode delivered a specific discharge capacity of ∼100 mAh g<sup>−1</sup> at the high current density of 1 A g<sup>−1</sup> with the average discharge potential of ∼3 V. These characteristics, in combination with the simple synthesis, pave the way to the practical implementation of the designed material in ultrafast, scalable and low-cost stationary batteries, which are urgently needed for electric grids operating with any considerable contribution from renewable energy sources due to their high variability. The proposed material design concept deserves further exploration and might lead to a big family of redox-active organic frameworks with superior electrochemical characteristics.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117796"},"PeriodicalIF":4.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142743448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovations in carbon nanotube polymer composites: Electrical, thermal, and mechanical advancements for aerospace and automotive applications 碳纳米管聚合物复合材料的创新:航空航天和汽车应用中的电、热和机械进步
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-22 DOI: 10.1016/j.synthmet.2024.117794
Maziyar Sabet
{"title":"Innovations in carbon nanotube polymer composites: Electrical, thermal, and mechanical advancements for aerospace and automotive applications","authors":"Maziyar Sabet","doi":"10.1016/j.synthmet.2024.117794","DOIUrl":"10.1016/j.synthmet.2024.117794","url":null,"abstract":"<div><div>This review critically examines recent advancements in carbon nanotube (CNT) polymer composites, focusing on innovative synthesis, functionalization, and fabrication strategies that enhance their mechanical, thermal, and electrical properties. Special emphasis is placed on their applications in aerospace and automotive industries, where these composites have demonstrated the potential to achieve weight reductions of up to 40% and fuel efficiency improvements of 20–25%. This work identifies key challenges, such as achieving uniform CNT dispersion and robust interfacial bonding, while addressing scalability issues in large-scale production. Comparative evaluations with traditional materials underscore the environmental and performance benefits of CNT composites. A comprehensive analysis of advanced fabrication techniques, along with a detailed summary table, provides technical insights and outlines pathways for future research and industrial implementation. This review aims to guide the development of next-generation lightweight, high-performance materials for critical engineering applications.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"310 ","pages":"Article 117794"},"PeriodicalIF":4.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced performance of solution-processed organic light-emitting diodes with TEMPOL derivatives 使用 TEMPOL 衍生物提高溶液处理有机发光二极管的性能
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-22 DOI: 10.1016/j.synthmet.2024.117798
Jae Ho Kim , Sumin Oh , Chaehyun Park , Yubin Kim , Gyumok Lim , Youngu Lee , Jin Woo Choi , Hyung Woo Lee , Myungkwan Song
{"title":"Enhanced performance of solution-processed organic light-emitting diodes with TEMPOL derivatives","authors":"Jae Ho Kim ,&nbsp;Sumin Oh ,&nbsp;Chaehyun Park ,&nbsp;Yubin Kim ,&nbsp;Gyumok Lim ,&nbsp;Youngu Lee ,&nbsp;Jin Woo Choi ,&nbsp;Hyung Woo Lee ,&nbsp;Myungkwan Song","doi":"10.1016/j.synthmet.2024.117798","DOIUrl":"10.1016/j.synthmet.2024.117798","url":null,"abstract":"<div><div>This study reports novel solution-processed 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL)-derivative organic compounds in a widely employed hole-injection/transport poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) layer. The TEMPOL-derived organic dopants, synthesized via a one-step chemical procedure, exhibited distinctive molecular dipole characteristics and electrical conductivities. The green organic light-emitting diodes (OLEDs) with a 4-benzene sulfonyl-2,2,6,6-tetramethyl-1-piperidenyloxy radical (TBS)-doped PEDOT:PSS layer exhibited a maximum power efficiency (PE<sub>max</sub>) of 25.58 lm W<sup>−1</sup>, maximum external quantum efficiency (EQE<sub>max</sub>) of 12.19 %, and maximum current efficiency (CE<sub>max</sub>) of 40.85 cd A<sup>−1</sup>, demonstrating significant improvements compared with the pristine PEDOT:PSS layer-based device. The PE<sub>max</sub> (16.18 lm W<sup>−1</sup>), EQE<sub>max</sub> (10.67 %), and CE<sub>max</sub> (37.01 cd A<sup>−1</sup>) were obtained with fiber OLEDs under same conditions. This enhancement in OLED performance can be attributed to the decreased hole-injection barrier at the anode and emissive layer interfaces.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117798"},"PeriodicalIF":4.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimethoxyphenoxy alpha-substituted metal-free, and metal phthalocyanines: Electrochemical redox, in-situ spectroelectrochemical and electrochromic properties 二甲氧基苯氧基α-取代的无金属和金属酞菁:电化学氧化还原、原位光谱电化学和电致变色特性
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-17 DOI: 10.1016/j.synthmet.2024.117786
Betül Nur Balkaş , Elif Bilgen , Özgün Akdağ , Zafer Odabaş , Ali Rıza Özkaya
{"title":"Dimethoxyphenoxy alpha-substituted metal-free, and metal phthalocyanines: Electrochemical redox, in-situ spectroelectrochemical and electrochromic properties","authors":"Betül Nur Balkaş ,&nbsp;Elif Bilgen ,&nbsp;Özgün Akdağ ,&nbsp;Zafer Odabaş ,&nbsp;Ali Rıza Özkaya","doi":"10.1016/j.synthmet.2024.117786","DOIUrl":"10.1016/j.synthmet.2024.117786","url":null,"abstract":"<div><div>In this study, (2,3-dimethoxy)phenoxy alpha-substituted CoPc (<strong>2</strong>) and CuPc (<strong>3</strong>) complexes were newly synthesized and spectrally characterized. The electrochemical, <em>in situ</em> spectroelectrochemical, and electrochromic properties of CoPc (<strong>2</strong>), CuPc (<strong>3</strong>), ZnPc (<strong>4</strong>), and H<sub>2</sub>Pc (<strong>5</strong>) were also investigated. This investigation discussed the electron-releasing effect of the methoxy (-OCH<sub>3</sub>) groups on the outermost part of the molecule compared with a previously reported (2,6-dimethoxy)phenoxy cobalt phthalocyanine. The results revealed that changing the binding positions of the substituting groups of the phthalocyanines led to detectable changes in the redox properties of complexes. The CoPc (<strong>2</strong>) showed additional redox processes and in situ spectroelectrochemical changes under potential during these processes compared to other complexes due to the redox-active nature of the metal center. Thus, the electrochromic features of the films of these complexes on indium-tin-oxide (ITO) electrodes were also identified and discussed. The films of the complexes displayed promising electrochromic responses with reversible redox processes, fast coloration, and high optical stability. ITO/CoPc (<strong>2</strong>) had the best electrochromic properties among these phthalocyanine films thanks to its rich redox nature.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"310 ","pages":"Article 117786"},"PeriodicalIF":4.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potentiostatic synthesis of polyaniline zinc and iron oxide composites for energy storage applications 用于储能应用的聚苯胺锌和氧化铁复合材料的恒电位合成
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-14 DOI: 10.1016/j.synthmet.2024.117784
Imran Khan , Anwar ul Haq Ali Shah , Salma Bilal , Philipp Röse
{"title":"Potentiostatic synthesis of polyaniline zinc and iron oxide composites for energy storage applications","authors":"Imran Khan ,&nbsp;Anwar ul Haq Ali Shah ,&nbsp;Salma Bilal ,&nbsp;Philipp Röse","doi":"10.1016/j.synthmet.2024.117784","DOIUrl":"10.1016/j.synthmet.2024.117784","url":null,"abstract":"<div><div>This study introduces an efficient potentiostatic method to enhance the energy storage performance of polyaniline (PN) by synthesizing PN@ZnO (PNZ), PN@Fe<sub>2</sub>O<sub>3</sub> (PNF), and PN@ZnFe<sub>2</sub>O<sub>4</sub> (PNZF) hybrid electrodes with defined porous morphology. The precise selection and control of the working potential during electro-polymerization and metal oxide integration using the linear sweep voltammetry was key for synthesizing the polymer hybrid electrodes reproducible and with defined composition and structure. The PNZF electrode demonstrated the highest specific capacitances of 816 F g<sup>−1</sup> and 791.3 F g<sup>−1</sup> at a scan rate of 5 mV s<sup>−1</sup> and 1.0 A g<sup>−1</sup> current density, along with high power density and energy density of 1058.4 W kg<sup>−1</sup> and 136.4 Wh kg<sup>−1</sup>, and with excellent stability retaining 90 % over 4000 cycles. We could attribute the excellent performance to a low charge transfer resistance of 25.0 Ω, a predominantly surface-controlled charge storage mechanism, and a porous morphology with uniform distribution of ZnFe<sub>2</sub>O<sub>4</sub> particles in the polymer network, all resulting from the electrochemical synthesis method. Our study provides valuable and new insights into the structural, optical, and electrochemical properties of PN composites, particularly PNZF.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"310 ","pages":"Article 117784"},"PeriodicalIF":4.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid nonfullerene acceptors based on thieno[2′,3′:4,5]thieno[3,2-b]indole for efficient organic solar cells 基于噻吩并[2′,3′:4,5]噻吩并[3,2-b]吲哚的混合非富勒烯受体用于高效有机太阳能电池
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-14 DOI: 10.1016/j.synthmet.2024.117785
Zhiyong Zhang , Qijie Lin , Liang Xie , Zeguang Wu , Lifei Yi , Jiamin Cao , Qiang Tao , Wanqiang Liu , Xin Zhang , Hui Huang
{"title":"Hybrid nonfullerene acceptors based on thieno[2′,3′:4,5]thieno[3,2-b]indole for efficient organic solar cells","authors":"Zhiyong Zhang ,&nbsp;Qijie Lin ,&nbsp;Liang Xie ,&nbsp;Zeguang Wu ,&nbsp;Lifei Yi ,&nbsp;Jiamin Cao ,&nbsp;Qiang Tao ,&nbsp;Wanqiang Liu ,&nbsp;Xin Zhang ,&nbsp;Hui Huang","doi":"10.1016/j.synthmet.2024.117785","DOIUrl":"10.1016/j.synthmet.2024.117785","url":null,"abstract":"<div><div>The emergence of non-fullerene acceptors (NFAs) has revived organic solar cells (OSCs) and promoted its industrialization significantly. Nowadays there are two main kinds of fused-ring electron acceptors: ITIC series and Y-series NFAs. Herein, two hybrid NFAs TIT-H and TIT-EH integrated ITIC series and Y-series NFAs have been developed, which based on thieno[2′,3′:4,5]thieno[3,2-<em>b</em>]indole-thiophene with one spiro group. TIT-H and TIT-EH both exhibited excellent thermal stability, low optical bandgaps of ∼1.5 eV, planar molecular geometries, and suitable energy levels. As a result, OSCs based on PM6:TIT-EH afforded a decent PCE of 13.32 %, with an <em>V</em><sub>OC</sub> of 0.856 V, a <em>J</em><sub>SC</sub> of 23.50 mA/cm<sup>2</sup> and a FF of 65.91 %, which was due to the suitable intermolecular interactions of TIT-EH, balanced charge carrier mobilities and face-on orientation in blend films. As comparison, PM6:TIT-H cell exhibited lower PCE of 12.26 %. These results demonstrated that hybrid NFAs are promising for OSC applications.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"310 ","pages":"Article 117785"},"PeriodicalIF":4.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Para-azaquinodimethane-based quinoidal copolymers: Significant enhancement of electrochemical performances and stability with conformational planarity 对位氮杂喹啉二甲烷基醌类共聚物:构象平面性显著提高电化学性能和稳定性
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-13 DOI: 10.1016/j.synthmet.2024.117781
Nguyen My Tu Tran, Bharath Dyaga, Godeline Mireille Nzouadi, Bruno Schmaltz, Nicolas Berton
{"title":"Para-azaquinodimethane-based quinoidal copolymers: Significant enhancement of electrochemical performances and stability with conformational planarity","authors":"Nguyen My Tu Tran,&nbsp;Bharath Dyaga,&nbsp;Godeline Mireille Nzouadi,&nbsp;Bruno Schmaltz,&nbsp;Nicolas Berton","doi":"10.1016/j.synthmet.2024.117781","DOIUrl":"10.1016/j.synthmet.2024.117781","url":null,"abstract":"<div><div>The electrochemical properties of quinoidal-donor (Q-D) alternating copolymers based on the new and attractive quinoidal unit para-azaquinodimethane (p-AQM) are investigated for the first time. A family of four polymers, namely PAQM3T, PAQM4T, PAQM2T-TT and PAQM2T-TVT, designed with different comonomers, is studied using cyclic voltammetry, galvanostatic charge/discharge cycling, electrochemical impedance spectroscopy and spectroelectrochemistry. While p-AQM molecules are known to be relatively unstable, it is demonstrated here that the Q-D polymers can be reversibly oxidized, indicating that p-doping does not generate highly reactive radical species on the methylene carbons of the alkoxy-substituted p-AQM units. This distinctive behavior of polymers <em>vs</em> small molecules can be attributed to a more efficient delocalization of radicals over the conjugated backbone. However, it is found that electrochemical performances and stability depend strongly on the nature of the donor unit. PAQM2T-TVT, having enhanced quinoidal character due to the presence of planar thiophene-vinylene-thiophene (TVT) units in its backbone, exhibits the highest specific and areal capacitance values (331 F/g and 83 mF/cm<sup>2</sup>, respectively) as well as improved capacitance retention upon galvanostatic cycling, up to 92 % after 200 cycles. Moreover, PAQM2T-TVT also shows remarkably improved rate capability, withstanding current densities as high as 10 mA/cm<sup>2</sup>, owing to higher electronic and ionic conductivity. This work suggests that the inclusion of monomer units inducing enhanced conformational planarity of the polymer backbone is crucial in optimizing the electrochemical properties and cyclability of p-AQM based polymers, making them promising materials for advanced electrochemical applications including (micro)supercapacitors and batteries.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"310 ","pages":"Article 117781"},"PeriodicalIF":4.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning molecular aggregation to enhance photovoltaic performance of polymers by isomerizing benzodithiophene moiety 通过异构化苯并二噻吩分子,调节分子聚合以提高聚合物的光伏性能
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2024-11-13 DOI: 10.1016/j.synthmet.2024.117783
Hailu Liu , Huanian Zhang , Mengjie Li , Dakang Wu , Honglin Tang , Xiang Zhang , Meihua Huang , Bin Zhao
{"title":"Tuning molecular aggregation to enhance photovoltaic performance of polymers by isomerizing benzodithiophene moiety","authors":"Hailu Liu ,&nbsp;Huanian Zhang ,&nbsp;Mengjie Li ,&nbsp;Dakang Wu ,&nbsp;Honglin Tang ,&nbsp;Xiang Zhang ,&nbsp;Meihua Huang ,&nbsp;Bin Zhao","doi":"10.1016/j.synthmet.2024.117783","DOIUrl":"10.1016/j.synthmet.2024.117783","url":null,"abstract":"<div><div>Benzo[1,2-<em>b</em>:4,5-<em>b</em>']dithiophene derivatives (BDT) have been extensively utilized as electron-donating (D) units for the synthesis of polymer donor materials. However, its isomers, benzo[2,1-<em>b</em>:3,4-<em>b</em>']dithiophene derivatives (<em>i</em>BDT), are rarely employed for this application. In this research, three polymer donors, namely PTz-BDT, PTz-<em>i</em>BDT-L, and PTz-<em>i</em>BDT-H, were designed and synthesized using BDT and <em>i</em>BDT as the D moieties, respectively. Notably, compared to PTz-BDT, the <em>i</em>BDT-based polymers exhibit superior solubility and more favorable aggregation properties. When combined with the non-fullerene acceptor Y6, the <em>i</em>BDT-based polymers exhibit a more advantageous phase morphology, tighter packing, higher charge mobilities, more balanced charge transport, and less charge recombination in the devices. Consequently, the power conversion efficiency (PCE) of the PTz-<em>i</em>BDT-H:Y6 PSC reaches 11.04 %, significantly surpassing those of the PSCs based on PTz-BDT (7.15 %) and the <em>i</em>BDT-based polymers reported in literature. This study introduces an effective approach to enhance the performance of polymeric donors by isomerizing its backbone and synchronously increasing its molecular weight.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"310 ","pages":"Article 117783"},"PeriodicalIF":4.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信