研究交替共聚物的电荷迁移率:共聚单体和电子-晶格相互作用的作用

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
D. Morais, W.S. Dias
{"title":"研究交替共聚物的电荷迁移率:共聚单体和电子-晶格相互作用的作用","authors":"D. Morais,&nbsp;W.S. Dias","doi":"10.1016/j.synthmet.2025.117861","DOIUrl":null,"url":null,"abstract":"<div><div>Unraveling the intricate interplay between charge carriers and molecular vibrations is vital to enhancing charge transport in organic semiconductors. In this study, we employ a tight-binding model calibrated with density functional theory (DFT)-derived parameters to investigate the influence of intermolecular vibrations on the charge transport properties of two specific copolymers: Thienothiophene-Phenylene (Tt-Ph) and Thiophene-Pyrrole (Th-Py). Our findings reveal the emergence of self-trapped excitations with soliton-like profiles, whose mobility is primarily governed by both the electron-lattice interaction and the on-site energies of the comonomers. Stronger electron-lattice coupling reduces the velocity of such hybridized excitations, eventually rendering them dynamically localized (localized) for electron-lattice interactions above a critical strength <em>χ</em><sub><em>c</em></sub>. Extending the analysis to potential alternating copolymer chains, the power-law fitting <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>∝</mo><msup><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>−</mo><mi>χ</mi></mrow><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>∕</mo><mn>2</mn></mrow></msup></mrow></math></span> for the velocity of soliton-like modes suggests a universal behavior of the underlying charge-lattice coupling. Furthermore, we unveil a nonlinear dependence between the critical carrier-lattice interaction <em>χ</em><sub><em>c</em></sub> and the effective difference in on-site energies of the comonomers, underscoring the delicate interplay between copolymer structure and charge-lattice interactions.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"312 ","pages":"Article 117861"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating charge mobility of alternating copolymers: The role of comonomers and electron-lattice interaction\",\"authors\":\"D. Morais,&nbsp;W.S. Dias\",\"doi\":\"10.1016/j.synthmet.2025.117861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unraveling the intricate interplay between charge carriers and molecular vibrations is vital to enhancing charge transport in organic semiconductors. In this study, we employ a tight-binding model calibrated with density functional theory (DFT)-derived parameters to investigate the influence of intermolecular vibrations on the charge transport properties of two specific copolymers: Thienothiophene-Phenylene (Tt-Ph) and Thiophene-Pyrrole (Th-Py). Our findings reveal the emergence of self-trapped excitations with soliton-like profiles, whose mobility is primarily governed by both the electron-lattice interaction and the on-site energies of the comonomers. Stronger electron-lattice coupling reduces the velocity of such hybridized excitations, eventually rendering them dynamically localized (localized) for electron-lattice interactions above a critical strength <em>χ</em><sub><em>c</em></sub>. Extending the analysis to potential alternating copolymer chains, the power-law fitting <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>∝</mo><msup><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>−</mo><mi>χ</mi></mrow><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>∕</mo><mn>2</mn></mrow></msup></mrow></math></span> for the velocity of soliton-like modes suggests a universal behavior of the underlying charge-lattice coupling. Furthermore, we unveil a nonlinear dependence between the critical carrier-lattice interaction <em>χ</em><sub><em>c</em></sub> and the effective difference in on-site energies of the comonomers, underscoring the delicate interplay between copolymer structure and charge-lattice interactions.</div></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"312 \",\"pages\":\"Article 117861\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677925000372\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677925000372","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

揭示载流子与分子振动之间复杂的相互作用对于增强有机半导体中的电荷输运至关重要。在这项研究中,我们采用密度泛函理论(DFT)衍生参数校准的紧密结合模型来研究分子间振动对两种特定共聚物:噻吩-苯炔(Tt-Ph)和噻吩-吡罗(Th-Py)的电荷传输特性的影响。我们的发现揭示了具有类似孤子轮廓的自困激发的出现,其迁移率主要由电子-晶格相互作用和共聚体的现场能量控制。更强的电子-晶格耦合降低了这种杂化激发的速度,最终使它们在电子-晶格相互作用高于临界强度χc时动态局部化。将分析扩展到电位交替共聚物链,类孤子模式速度的幂律拟合vs (χc−χ)1∕2表明了潜在电荷-晶格耦合的普遍行为。此外,我们揭示了临界载流子-晶格相互作用χc与共聚物现场有效能量差之间的非线性依赖关系,强调了共聚物结构和电荷-晶格相互作用之间的微妙相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating charge mobility of alternating copolymers: The role of comonomers and electron-lattice interaction
Unraveling the intricate interplay between charge carriers and molecular vibrations is vital to enhancing charge transport in organic semiconductors. In this study, we employ a tight-binding model calibrated with density functional theory (DFT)-derived parameters to investigate the influence of intermolecular vibrations on the charge transport properties of two specific copolymers: Thienothiophene-Phenylene (Tt-Ph) and Thiophene-Pyrrole (Th-Py). Our findings reveal the emergence of self-trapped excitations with soliton-like profiles, whose mobility is primarily governed by both the electron-lattice interaction and the on-site energies of the comonomers. Stronger electron-lattice coupling reduces the velocity of such hybridized excitations, eventually rendering them dynamically localized (localized) for electron-lattice interactions above a critical strength χc. Extending the analysis to potential alternating copolymer chains, the power-law fitting vs(χcχ)12 for the velocity of soliton-like modes suggests a universal behavior of the underlying charge-lattice coupling. Furthermore, we unveil a nonlinear dependence between the critical carrier-lattice interaction χc and the effective difference in on-site energies of the comonomers, underscoring the delicate interplay between copolymer structure and charge-lattice interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic Metals
Synthetic Metals 工程技术-材料科学:综合
CiteScore
8.30
自引率
4.50%
发文量
189
审稿时长
33 days
期刊介绍: This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信