Synapse最新文献

筛选
英文 中文
Issue Information 问题信息
IF 2.3 4区 医学
Synapse Pub Date : 2022-08-01 DOI: 10.1002/syn.22211
{"title":"Issue Information","authors":"","doi":"10.1002/syn.22211","DOIUrl":"https://doi.org/10.1002/syn.22211","url":null,"abstract":"","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"76 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41949713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of cadmium administration on the antioxidant system and neuronal death in the hippocampus of rats 镉对大鼠海马抗氧化系统及神经元死亡的影响
IF 2.3 4区 医学
Synapse Pub Date : 2022-06-16 DOI: 10.1002/syn.22242
S. Treviño, Guadalupe Pulido, Estefania Fuentes, Anabella Handal-Silva, A. Moreno-Rodríguez, Berenice Venegas, Gonzalo Flores, J. Guevara, Alfonso Díaz
{"title":"Effect of cadmium administration on the antioxidant system and neuronal death in the hippocampus of rats","authors":"S. Treviño, Guadalupe Pulido, Estefania Fuentes, Anabella Handal-Silva, A. Moreno-Rodríguez, Berenice Venegas, Gonzalo Flores, J. Guevara, Alfonso Díaz","doi":"10.1002/syn.22242","DOIUrl":"https://doi.org/10.1002/syn.22242","url":null,"abstract":"Cadmium (Cd) is a heavy metal classified as a carcinogen whose exposure could affect the function of the central nervous system. Studies suggest that Cd modifies neuronal morphology in the hippocampus and affects cognitive tasks. The oxidative stress pathway is proposed as a mechanism of toxicity. However, this mechanism is not precise yet. This study aimed to evaluate the effect of Cd administration on oxidative stress markers in the male rat's hippocampus. Male Wistar rats were divided into (1) control (drinking water) and (2) treatment with Cd (32.5 ppm of cadmium chloride (CdCl2) in water). The Cd was administered for 2, 3, and 4 months. The results show that the oral administration of CdCl2 increased the concentration of Cd in plasma and hippocampus, and this response is time‐dependent on its administration. Likewise, it caused an increase in lipid peroxidation and nitrosative stress markers.","PeriodicalId":22131,"journal":{"name":"Synapse","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48992992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Functions of potassium channels blocked by low micromolar 4‐aminopyridine in the crayfish nervous system 低微摩尔4 -氨基吡啶阻断小龙虾神经系统钾通道的功能
IF 2.3 4区 医学
Synapse Pub Date : 2022-04-23 DOI: 10.1002/syn.22234
Nicole Goldfeder, Riley McDonald, Sarah Gaston, Amarri Harrison, Dong-Ho Kim, C. MacIntosh, Mauricio Moel Miranda, Emma Odom, Simmi Nishad, W. Siwik, Liangzhu Zhang, Jen-Wei Lin
{"title":"Functions of potassium channels blocked by low micromolar 4‐aminopyridine in the crayfish nervous system","authors":"Nicole Goldfeder, Riley McDonald, Sarah Gaston, Amarri Harrison, Dong-Ho Kim, C. MacIntosh, Mauricio Moel Miranda, Emma Odom, Simmi Nishad, W. Siwik, Liangzhu Zhang, Jen-Wei Lin","doi":"10.1002/syn.22234","DOIUrl":"https://doi.org/10.1002/syn.22234","url":null,"abstract":"4‐aminopyridine (4‐AP) is a potassium channel blocker that has been used to treat patients with multiple sclerosis and Lambert–Eaton disease. The concentration of this drug in the blood of patients was estimated to be in low or submicromolar range. Animal studies have shown that 4‐AP at such low concentration selectively blocks a subset of channels in Kv1 or Kv3 families. The crayfish opener neuromuscular junction and ventral superficial flexor (VSF) preparations were used to examine functions of K+ channels blocked by low concentrations of 4‐AP. At opener motor axons, intracellular recordings show that 4‐AP could increase action potential (AP) amplitude, duration, and after‐depolarization (ADP) at 10 μM. As 4‐AP concentration was increased, in twofold steps, AP amplitude did not increase further up to 5 mM. AP duration and ADP increased significantly mainly in two concentration ranges, 10–50 μM and 1–5 mM. The effects of 50 μM 4‐AP on the VSF were less consistent than that observed at the opener motor axons. 4‐AP did not change AP amplitude of motor axons recorded with an extracellular electrode and change in AP repolarizing potential was observed in ∼25% of the axons. EPSP recorded simultaneously with AP showed an increase in amplitude with 4‐AP treatment only in 30% of the axon‐EPSP pairs. 4‐AP also increased firing frequencies of ∼50% of axons. In four animals, 4‐AP “awakened” the firing of APs from an axon that was silent before the drug. The mixture of positive and negative 4‐AP effects summarized above was observed in the same VSF preparations in all cases (n = 8). We propose that there is a significant diversity in the density 4‐AP‐sensitive potassium channels among motor axons of the VSF. Functional significance in the differences of 4‐AP sensitivity of the two motor systems is discussed.","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"76 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50871907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limited power of dopamine transporter mRNA mapping for predicting dopamine transporter availability. 多巴胺转运体mRNA定位预测多巴胺转运体有效性的能力有限。
IF 2.3 4区 医学
Synapse Pub Date : 2022-04-01 Epub Date: 2022-02-13 DOI: 10.1002/syn.22226
Kyoungjune Pak, Seongho Seo, Myung Jun Lee, Hyung-Jun Im, Keunyoung Kim, In Joo Kim
{"title":"Limited power of dopamine transporter mRNA mapping for predicting dopamine transporter availability.","authors":"Kyoungjune Pak,&nbsp;Seongho Seo,&nbsp;Myung Jun Lee,&nbsp;Hyung-Jun Im,&nbsp;Keunyoung Kim,&nbsp;In Joo Kim","doi":"10.1002/syn.22226","DOIUrl":"https://doi.org/10.1002/syn.22226","url":null,"abstract":"<p><p>Dopamine transporters (DAT) are transmembrane proteins that translocate dopamine from the extracellular space into presynaptic neurons. We aimed to investigate the predictive power of DAT mRNA for DAT protein expression, measured using positron emission tomography (PET). We performed <sup>18</sup> F-FP-CIT PET scans in 35 healthy individuals. Binding potentials (BP<sub>ND</sub> ) from the ventral striatum, caudate nucleus, putamen, and middle frontal, orbitofrontal, cingulate, parietal, and temporal cortices were measured. DAT gene expression data were obtained from the freely available Allen Human Brain Atlas derived from six healthy donors. The auto-correlation of PET-derived BP<sub>ND</sub> s for DAT was intermediate (mean ρ<sup>2</sup>  = .66) with ρ<sup>2</sup> ranging from .0811 to 1. However, the auto-correlation of mRNA expression was weak across the probes with a mean ρ<sup>2</sup> of .09-.23. Cross-correlations between PET-derived BP<sub>ND</sub> s and mRNA expression were weak with a mean ρ<sup>2</sup> ranging from 0 to .22 across the probes. In conclusion, we observed weak associations between DAT mRNA expression and DAT availability in human brains. Therefore, DAT mRNA mapping may have only limited predictive power for DAT availability in humans. However, the difference in distribution of DAT mRNA and DAT protein may influence this limitation.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"76 5-6","pages":"e22226"},"PeriodicalIF":2.3,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39575984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Issue Information 问题信息
IF 2.3 4区 医学
Synapse Pub Date : 2022-04-01 DOI: 10.1002/syn.22207
{"title":"Issue Information","authors":"","doi":"10.1002/syn.22207","DOIUrl":"https://doi.org/10.1002/syn.22207","url":null,"abstract":"","PeriodicalId":22131,"journal":{"name":"Synapse","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49235841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glutamate potentiates heterologously expressed homomeric acid-sensing ion channel 1a. 谷氨酸增强异种表达的同质酸感应离子通道1a。
IF 2.3 4区 医学
Synapse Pub Date : 2022-04-01 Epub Date: 2022-02-25 DOI: 10.1002/syn.22227
Vasilii Shteinikov, Konstantin Evlanenkov, Konstantin Bolshakov, Denis Tikhonov
{"title":"Glutamate potentiates heterologously expressed homomeric acid-sensing ion channel 1a.","authors":"Vasilii Shteinikov,&nbsp;Konstantin Evlanenkov,&nbsp;Konstantin Bolshakov,&nbsp;Denis Tikhonov","doi":"10.1002/syn.22227","DOIUrl":"https://doi.org/10.1002/syn.22227","url":null,"abstract":"<p><p>Acid-sensing ion channels (ASICs) participate in synaptic transmission due to the acidic content of synaptic vesicles, but their contribution to postsynaptic currents is small. This has stimulated attempts to find endogenous ASIC potentiators that could enhance ASIC-mediated currents to physiologically relevant values. Here we demonstrate that glutamate, which serves as a neurotransmitter, potentiates recombinant ASIC1a in the submillimolar concentration range. The effect of glutamate is especially interesting as ASIC's presence has been shown in glutamatergic synapses. At pH=6.5 glutamate had maximum potentiation of 87% with an EC<sub>50</sub> value of 0.65 mM. The mechanism of potentiation is due to a shift of pH-dependent activation to less acidic values, with 0.5 mM glutamate increasing pH<sub>50</sub> from 6.04 to 6.43. Due to this mechanism, ASIC1a in glutamatergic synapses might be intrinsically potentiated. Furthermore, this effect could compensate for the inhibition of ionotropic glutamate receptors by extracellular acidification during synaptic transmission.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"76 5-6","pages":"e22227"},"PeriodicalIF":2.3,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39624320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Comparative analysis of striatal [18F]FDOPA uptake in a partial lesion model of Parkinson's disease in rats: Ratio method versus graphical model 帕金森病部分病变模型大鼠纹状体[18F]FDOPA摄取的比较分析:比值法与图形模型
IF 2.3 4区 医学
Synapse Pub Date : 2022-03-06 DOI: 10.1002/syn.22231
A. Avendaño-Estrada, L. Verdugo-Dı́az, M. Ávila-Rodríguez
{"title":"Comparative analysis of striatal [18F]FDOPA uptake in a partial lesion model of Parkinson's disease in rats: Ratio method versus graphical model","authors":"A. Avendaño-Estrada, L. Verdugo-Dı́az, M. Ávila-Rodríguez","doi":"10.1002/syn.22231","DOIUrl":"https://doi.org/10.1002/syn.22231","url":null,"abstract":"Animal models of Parkinson's disease are useful to evaluate new treatments and to elucidate the etiology of the disease. Hence, it is necessary to have methods that allow quantification of their effectiveness. [18F]FDOPA‐PET (FDOPA‐PET) imaging is outstanding for this purpose because of its capacity to measure changes in the dopaminergic pathway noninvasively and in vivo. Nevertheless, PET acquisition and quantification is time‐consuming making it necessary to find faster ways to quantify FDOPA‐PET data. This study evaluated Male Wistar rats by FDOPA, before and after being partially injured with 6‐OHDA unilaterally. MicroPET scans with a duration of 120 min were acquired and Patlak reference plots were created to estimate the influx constant Kc in the striatum using the full dynamic scan data. Additionally, simple striatal‐to‐cerebral ratios (SCR) of short static acquisitions were computed and compared with the Kc values. Good correlation (r > 0.70) was obtained between Kc and SCR, acquired between 80–120 min after FDOPA administration with frames of 10 or 20 min and both methods were able to separate the FDOPA‐uptake of healthy controls from that of the PD model (SCR −28%, Kc −71%). The present study concludes that Kc and SCR can be trustfully used to discriminate partially lesioned rats from healthy controls.","PeriodicalId":22131,"journal":{"name":"Synapse","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44064652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. 内体循环和多巴胺神经传递:探索逆转录酶与帕金森病之间的联系。
IF 2.3 4区 医学
Synapse Pub Date : 2022-03-01 Epub Date: 2022-02-14 DOI: 10.1002/syn.22224
Nathan Gock, Jordan Follett, Gordon L Rintoul, Timothy V Beischlag, Frank J S Lee
{"title":"Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease.","authors":"Nathan Gock,&nbsp;Jordan Follett,&nbsp;Gordon L Rintoul,&nbsp;Timothy V Beischlag,&nbsp;Frank J S Lee","doi":"10.1002/syn.22224","DOIUrl":"https://doi.org/10.1002/syn.22224","url":null,"abstract":"<p><p>The retromer complex is an evolutionarily conserved protein complex involved in the endosomal recycling of various cargo proteins. It is ubiquitously expressed in all tissue and is found in both invertebrate as well as mammalian nervous systems, where it recycles various synaptic membrane proteins including the dopamine transporter and dopamine D1 receptor, two proteins implicated in dopamine homeostasis and neurotransmission. The involvement of the retromer complex in dopamine neurobiology is further underscored by its links to Parkinson's disease, a neurodegenerative disorder of the dopamine system. In this article, the existing literature linking the retromer complex to synaptic function and dopamine homeostasis is reviewed. Additional possible links are highlighted by exploring the retromer and other Parkinson's disease-associated proteins and possible relationships to synaptic function and dopamine transmission.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"76 3-4","pages":"e22224"},"PeriodicalIF":2.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39737540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information 问题信息
IF 2.3 4区 医学
Synapse Pub Date : 2022-03-01 DOI: 10.1002/syn.22205
{"title":"Issue Information","authors":"","doi":"10.1002/syn.22205","DOIUrl":"https://doi.org/10.1002/syn.22205","url":null,"abstract":"","PeriodicalId":22131,"journal":{"name":"Synapse","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42542370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does astrocyte gap junction protein expression differ during development in absence epileptic rats? 缺失性癫痫大鼠发育过程中星形胶质细胞间隙连接蛋白表达不同吗?
IF 2.3 4区 医学
Synapse Pub Date : 2022-03-01 Epub Date: 2022-02-18 DOI: 10.1002/syn.22225
Büşra Köse, Mazhar Özkan, İlknur Sur-Erdem, Safiye Çavdar
{"title":"Does astrocyte gap junction protein expression differ during development in absence epileptic rats?","authors":"Büşra Köse,&nbsp;Mazhar Özkan,&nbsp;İlknur Sur-Erdem,&nbsp;Safiye Çavdar","doi":"10.1002/syn.22225","DOIUrl":"https://doi.org/10.1002/syn.22225","url":null,"abstract":"<p><p>Intercellular communication via gap junctions (GJs) has a wide variety of complex and essential functions in the CNS. In the present developmental study, we aimed to quantify the number of astrocytic GJs protein connexin 30 (Cx30) of genetic model of absence epilepsy rats from Strasbourg (GAERS) at postnatal P10, P30, and P60 days in the epileptic focal areas involved in the cortico-thalamic circuit. We compared the results with Wistar rats using immunohistochemistry and western blotting. The number of Cx30 immunopositive astrocytes per unit area were quantified for the somatosensory cortex (SSCx), ventrobasal (VB), and lateral geniculate (LGN) thalamic nuclei of the two strains and Cx30 western blot was applied to the tissue samples from the same regions. Both immunohistochemical and western blot results revealed the presence of Cx30 in all regions studied at P10 in both Wistar and GAERS animals. The SSCx, VB, and LGN of Wistar animals showed progressive increase in the number of Cx30 immunopositive labeled astrocytes from P10 to P30 and reached a peak at P30; then a significant decline was observed from P30 to P60 for the SSCx and VB. However, in GAERS Cx30 immunopositive labeled astrocytes showed a progressive increase from P10 to P60 for all brain regions studied. The immunohistochemical data highly corresponded with western blotting results. We conclude that the developmental disproportional expression of Cx30 in the epileptic focal areas in GAERS may be related to the onset of absence seizures or may be related to the neurogenesis of absence epilepsy.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"76 3-4","pages":"e22225"},"PeriodicalIF":2.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39598913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信