Stem Cells Translational Medicine最新文献

筛选
英文 中文
Correction to: Metabolic Maturation Increases Susceptibility to Hypoxia-induced Damage in Human iPSC-derived Cardiomyocytes.
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-02-11 DOI: 10.1093/stcltm/szaf003
{"title":"Correction to: Metabolic Maturation Increases Susceptibility to Hypoxia-induced Damage in Human iPSC-derived Cardiomyocytes.","authors":"","doi":"10.1093/stcltm/szaf003","DOIUrl":"10.1093/stcltm/szaf003","url":null,"abstract":"","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 2","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-based therapies in preclinical models of necrotizing enterocolitis: a systematic review and meta-analysis.
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-02-11 DOI: 10.1093/stcltm/szae102
Camille Maltais-Bilodeau, Ewa Henckel, Marc-Olivier Deguise, Flore Lesage, Kelly D Cobey, Nadera Ahmadzai, Becky Skidmore, Emanuela Ferretti, Bernard Thébaud
{"title":"Cell-based therapies in preclinical models of necrotizing enterocolitis: a systematic review and meta-analysis.","authors":"Camille Maltais-Bilodeau, Ewa Henckel, Marc-Olivier Deguise, Flore Lesage, Kelly D Cobey, Nadera Ahmadzai, Becky Skidmore, Emanuela Ferretti, Bernard Thébaud","doi":"10.1093/stcltm/szae102","DOIUrl":"10.1093/stcltm/szae102","url":null,"abstract":"<p><p>Necrotizing enterocolitis (NEC) remains an incurable gut complication of prematurity with significant morbidity and mortality. Cell therapies, including mesenchymal stromal cells (MSCs), may be a promising treatment given their anti-inflammatory and regenerative potential. We assessed the effect of MSCs and other cell therapies (not classified as MSCs) on incidence, severity, and mortality in preclinical models of NEC. Bibliographic and gray literature searches yielded 17 371 records with 107 full-text articles assessed and ultimately 16 studies were included. These studies featured only rodents NEC models via combination of hyperosmolar feeds, hypoxia, hypothermia, or lipopolysaccharides. Ten studies used interventions with MSCs. Only 2 met the minimal criteria to define MSCs proposed by the International Society for Cell & Gene Therapy (ISCT). The overall risk of bias was assessed as high partly due to paucity of data with important gaps in reporting, reinforcing the importance of rigorous research framework, appropriate cell-therapy and outcome reporting in preclinical research. A reduction in the incidence of NEC (odds ratio [OR] 0.32, 95% CI [0.17, 0.62]), severe NEC (OR 0.30, 95% CI [0.18, 0.50]), and mortality (OR 0.30, 95% CI [0.16, 0.55]) was noted with MSCs treatment, seemingly more pronounced for ISCT-defined (ISCT+) MSCs. Amniotic fluid stem cells, neural stem cells, and placenta stem cells also showed a reduction in these measures. Given their accessibility (ie, umbilical cord) and proven safety profile in extremely preterm infants, our analysis provides a foundation for considering MSCs as promising candidate that requires further evaluation for the treatment of NEC.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 2","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction. LncRNA NR_045147通过ITGB3BP降解和线粒体功能障碍调节PDLSCs的成骨分化和迁移。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-02-11 DOI: 10.1093/stcltm/szae088
Lujue Long, Chen Zhang, Zhengquan He, Ousheng Liu, Haoqing Yang, Zhipeng Fan
{"title":"LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction.","authors":"Lujue Long, Chen Zhang, Zhengquan He, Ousheng Liu, Haoqing Yang, Zhipeng Fan","doi":"10.1093/stcltm/szae088","DOIUrl":"10.1093/stcltm/szae088","url":null,"abstract":"<p><p>Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147-MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive evaluation system for ultrasound-guided infusion of human umbilical cord-derived MSCs in liver cirrhosis patients. 肝硬化患者超声引导输注人脐源性间充质干细胞的综合评估系统
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-01-17 DOI: 10.1093/stcltm/szae081
Guo Zhou, Yijuan You, Binghua Wang, Simin Wang, Tianhang Feng, Chunyou Lai, Guangming Xiang, Ke Yang, Yutong Yao
{"title":"A comprehensive evaluation system for ultrasound-guided infusion of human umbilical cord-derived MSCs in liver cirrhosis patients.","authors":"Guo Zhou, Yijuan You, Binghua Wang, Simin Wang, Tianhang Feng, Chunyou Lai, Guangming Xiang, Ke Yang, Yutong Yao","doi":"10.1093/stcltm/szae081","DOIUrl":"10.1093/stcltm/szae081","url":null,"abstract":"<p><strong>Background: </strong>Infusion of mesenchymal stem cells (MSCs) via portal vein is one of the main ways for MSCs transplantation to treat liver cirrhosis (LC). As the tissue of LC showed diffuse fibrosis and thickened Glission sheath, the soft pig-tail catheter, or central venous catheter can not successfully insert the portal vein. Thus, our study used an improved method and performed a relatively comprehensive system to evaluate the effect for human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation.</p><p><strong>Method: </strong>Fifteen patients with hepatitis B-related cirrhosis were enrolled in the study, and we performed hUC-MSCs transplantation via portal vein by using an 16-G needle and 0.035-inch guide wire combined with 7FR \"retentional metal stiffner trocar\" of pig-tail catheter under the guidance of contrast-enhanced ultrasound. Serum liver function, fibrotic indicators, tissue stiffness, coagulation function, and hemodynamics were measured at weeks 4, 12, and 24 after MSCs transplantation. Liver biopsy was performed before and 24 weeks after hUC-MSCs transplantation.</p><p><strong>Result: </strong>After hUC-MSCs transplantation, the prothrombin time was lower than before. The levels of hyaluronic acid and IV-C(Type IV collagen) in fibrotic indicators were significantly reduced, and the Young's modulus was also decreased. Moreover, liver biopsy showed that the lytic necrosis of hepatocyte was decreased. In liver hemodynamics, the portal vein diameter was decreased after hUC-MSCs transplantation.</p><p><strong>Conclusion: </strong>hUC-MSCs transplantation can alleviate liver damage caused by LC. The improved \"retentional metal stiffner trocar\" of pig-tail catheter was safe and effective in the infusion of hUC-MSCs transplantation, which is worth promoting in clinical practice.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amniotic fluid stem cell extracellular vesicles as a novel fetal therapy for pulmonary hypoplasia: a review on mechanisms and translational potential.
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-01-17 DOI: 10.1093/stcltm/szae095
Fabian Doktor, Lina Antounians, Rebeca Lopes Figueira, Kasra Khalaj, Miriam Duci, Augusto Zani
{"title":"Amniotic fluid stem cell extracellular vesicles as a novel fetal therapy for pulmonary hypoplasia: a review on mechanisms and translational potential.","authors":"Fabian Doktor, Lina Antounians, Rebeca Lopes Figueira, Kasra Khalaj, Miriam Duci, Augusto Zani","doi":"10.1093/stcltm/szae095","DOIUrl":"https://doi.org/10.1093/stcltm/szae095","url":null,"abstract":"<p><p>Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development. Hypoplastic lungs have impaired growth (arrested branching morphogenesis), maturation (decreased epithelial/mesenchymal differentiation), and vascularization (endothelial dysfunction and vascular remodeling leading to postnatal pulmonary hypertension). Herein, we discuss the pathogenesis of pulmonary hypoplasia and the role of microRNAs (miRNAs) during normal and pathological lung development. Since multiple cells and pathways are altered, the ideal strategy for hypoplastic lungs is to deliver a therapy that addresses all aspects of abnormal lung development. In this review, we report on a novel regenerative approach based on the administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). Specifically, we describe the effects of AFSC-EVs in rodent and human models of pulmonary hypoplasia, their mechanism of action via release of their cargo, including miRNAs, and their anti-inflammatory properties. We also compare cargo contents and regenerative effects of EVs from AFSCs and mesenchymal stromal cells (MSCs). Overall, there is compelling evidence that antenatal administration of AFSC-EVs rescues multiple features of fetal lung development in experimental models of pulmonary hypoplasia. Lastly, we discuss the steps that need to be taken to translate this promising EV-based therapy from the bench to the bedside. These include strategies to overcome barriers commonly associated with EV therapeutics and specific challenges related to stem cell-based therapies in fetal medicine.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: Fate and Efficacy of Engineered Allogeneic Stem Cells Targeting Cell Death and Proliferation Pathways in Primary and Brain Metastatic Lung Cancer. 表达关注:针对原发性和脑转移性肺癌细胞死亡和增殖途径的工程异体干细胞的命运和疗效。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-01-17 DOI: 10.1093/stcltm/szae012
{"title":"Expression of Concern: Fate and Efficacy of Engineered Allogeneic Stem Cells Targeting Cell Death and Proliferation Pathways in Primary and Brain Metastatic Lung Cancer.","authors":"","doi":"10.1093/stcltm/szae012","DOIUrl":"10.1093/stcltm/szae012","url":null,"abstract":"","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3' UTR-truncated HMGA2 promotes erythroblasts production from human embryonic stem cells.
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-01-17 DOI: 10.1093/stcltm/szaf001
Tiantian Cui, Xiaoling Wang, Ruge Zang, Lingping Zhao, Hao Yan, Xuan Li, Zhenzhao Xu, Haiyang Wang, Junnian Zhou, Yiming Liu, Wen Yue, Xuetao Pei, Jiafei Xi
{"title":"3' UTR-truncated HMGA2 promotes erythroblasts production from human embryonic stem cells.","authors":"Tiantian Cui, Xiaoling Wang, Ruge Zang, Lingping Zhao, Hao Yan, Xuan Li, Zhenzhao Xu, Haiyang Wang, Junnian Zhou, Yiming Liu, Wen Yue, Xuetao Pei, Jiafei Xi","doi":"10.1093/stcltm/szaf001","DOIUrl":"https://doi.org/10.1093/stcltm/szaf001","url":null,"abstract":"<p><p>Cultured red blood cells represent an alternative resource for blood transfusions. However, important issues such as low yields and high costs remain. Recently, gene editing of hematopoietic stem cells has been conducted to induce erythroid differentiation in vitro for producing sufficient RBCs to meet the imbalance in blood supply and demand. The differentiation and expansion of hematopoietic stem and progenitor cells are regulated by transcription factors, such as high mobility group AT-hook 2 (HMGA2). In this study, we utilized CRISPR/Cas9 to establish a doxycycline-inducible HMGA2-expressing human embryonic stem cell (hESC) line. In a defined erythroid differentiation system, HMGA2 prolonged erythroid differentiation in vitro, enabling extensive expansion of human erythroblasts. The erythroblasts derived from the HMGA2-expressing hESC line are rich in polychromatic and orthochromatic erythroblasts expressing mostly α- and γ-globin and have the capacity to differentiate into RBCs. Our findings highlight the potential of combining hematopoietic transcription factors with genome editing techniques to enhance RBC production.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factor 3 regulates airway engraftment by human bronchial basal cells. 因子 3 调节人类支气管基底细胞的气道移植。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-01-17 DOI: 10.1093/stcltm/szae084
Susan D Reynolds, Cynthia L Hill, Alfahdah Alsudayri, Jacob T Stack, Kimberly M Shontz, Gianni Carraro, Barry R Stripp, Tendy Chiang
{"title":"Factor 3 regulates airway engraftment by human bronchial basal cells.","authors":"Susan D Reynolds, Cynthia L Hill, Alfahdah Alsudayri, Jacob T Stack, Kimberly M Shontz, Gianni Carraro, Barry R Stripp, Tendy Chiang","doi":"10.1093/stcltm/szae084","DOIUrl":"10.1093/stcltm/szae084","url":null,"abstract":"<p><p>Cystic fibrosis transmembrane conductance regulator (CFTR) gene editing and transplantation of CFTR-gene corrected airway basal cells has the potential to cure CF lung disease. Although mouse studies established that cell transplantation was feasible, the engraftment rate was typically low and frequently less than the estimated therapeutic threshold. The purpose of this study was to identify genes and culture conditions that regulate the therapeutic potential of human bronchial basal cells. Factor 3 (F3, Tissue Factor 1) is a component of the extrinsic coagulation pathway and activates a cascade of proteases that convert fibrinogen to fibrin. Based on reports that F3 was necessary for human basal cell survival and adhesion in vitro, the present study evaluated F3 as a potential determinant of therapeutic fitness. The gene expression profile of F3 mRNA-positive human bronchial basal cells was evaluated by scRNAseq and the impact of the lung environment on F3 expression was modeled by varying in vitro culture conditions. F3 necessity for adhesion, proliferation, and differentiation was determined by CRISPR/Cas9 knockout (KO) of the F3 gene. Finally, the impact of F3 manipulation on engraftment was determined by orthotropic co-transplantation of wild-type and F3-KO cells into the airways of immunocompromised mice. In contrast with the hypothesis that F3 increases the therapeutic fitness of basal cells, F3 expression decreased engraftment. These studies guide the ongoing development of cellular therapies by showing that in vitro assessments may not predict therapeutic potential and that the lung milieu influences the functional properties of transplanted bronchial basal cells.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and intra-renal delivery of renal progenitor organoids for effective integration in vivo. 开发肾脏祖细胞器官组织并在肾脏内输送,以实现体内有效整合。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-01-17 DOI: 10.1093/stcltm/szae078
Diana Lim, Ickhee Kim, Qianqian Song, Ji Hyun Kim, Anthony Atala, John D Jackson, James J Yoo
{"title":"Development and intra-renal delivery of renal progenitor organoids for effective integration in vivo.","authors":"Diana Lim, Ickhee Kim, Qianqian Song, Ji Hyun Kim, Anthony Atala, John D Jackson, James J Yoo","doi":"10.1093/stcltm/szae078","DOIUrl":"10.1093/stcltm/szae078","url":null,"abstract":"<p><p>Renal progenitor organoids have been proposed as a source of tissue for kidney regeneration; however, their clinical translatability has not been demonstrated due to an inability to mass-produce comprehensive renal progenitor organoids and the lack of an effective intra-renal delivery platform that facilitates rapid integration into functionally meaningful sites. This study addresses these shortcomings. Human-induced pluripotent stem cells were differentiated into renal progenitor cells using an established protocol and aggregated using a novel assembly method to produce high yields of organoids. Organoids were encapsulated in collagen-based scaffolds for in vitro study and in vivo implantation into mouse renal cortex. In vitro, the organoids demonstrated sustained cell viability and renal structure maturation over time. In vivo delivered organoids showed rapid integration into host renal parenchyma while showing tubular and glomerular-like structure development and maturity markers. This proof-of-concept study presents many promising results, providing a system of renal organoid formation and delivery that may support the development of clinically translatable therapies and the advancement of in vitro renal organoid studies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human umbilical cord mesenchymal stem cells small extracellular vesicles-derived miR-370-3p inhibits cervical precancerous lesions by targeting DHCR24. 人脐带间充质干细胞小细胞外囊泡衍生的 miR-370-3p 通过靶向 DHCR24 抑制宫颈癌前病变。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-01-17 DOI: 10.1093/stcltm/szae087
Weizhao Li, Chi Zhang, Tianshun Gao, Yazhou Sun, Huan Yang, Lixiang Liu, Ming Shi, Lu Ding, Changlin Zhang, David Y B Deng, Tian Li
{"title":"Human umbilical cord mesenchymal stem cells small extracellular vesicles-derived miR-370-3p inhibits cervical precancerous lesions by targeting DHCR24.","authors":"Weizhao Li, Chi Zhang, Tianshun Gao, Yazhou Sun, Huan Yang, Lixiang Liu, Ming Shi, Lu Ding, Changlin Zhang, David Y B Deng, Tian Li","doi":"10.1093/stcltm/szae087","DOIUrl":"10.1093/stcltm/szae087","url":null,"abstract":"<p><strong>Background: </strong>Cervical cancer is often caused by persistent high-risk human papillomavirus (HPV) infection, causing precancerous lesions. Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (hucMSC-sEV) exhibit diverse effects on tumors. This study investigates hucMSC-sEV, the impact and mechanisms on HPV-positive cervical precancerous lesion cells to provide new treatment insights.</p><p><strong>Materials and methods: </strong>We previously obtained hucMSC and hucMSC-sEV. In vitro experiments evaluated hucMSC-sEV effects on the proliferation and migration of S12 cells (derived from cervical precancerous lesions). Bioinformatics identified key microRNA components, and their impact on S12 cell proliferation and migration was investigated. The target gene of the microRNA component was predicted and confirmed via bioinformatics and dual-luciferase reporter assays. Lentiviral systems overexpressed target gene in S12 cells to examine the effects on microRNA impacts. SH-42 inhibitor was used to investigate target gene treatment potential. Immunohistochemistry assessed target gene expression in cervical precancerous lesions tissue.</p><p><strong>Results: </strong>hucMSC-sEV significantly inhibited S12 cell proliferation and migration. Bioinformatics identified miR-370-3p as an effective cargo, which also suppressed S12 cell proliferation and migration. miR-370-3p was confirmed targeting DHCR24 (24-Dehydrocholesterol Reductase). DHCR24 overexpression reversed miR-370-3p's inhibitory effects, while SH-42 counteracted DHCR24 overexpression's promoting effects. Clinical specimen analysis supported these findings, demonstrating a positive correlation between DHCR24 protein expression and cervical precancerous lesions' progression.</p><p><strong>Conclusions: </strong>hucMSC-sEV inhibits S12 cell proliferation and migration, mediated by miR-370-3p targeting DHCR24 to regulate cellular cholesterol content. DHCR24 inhibition reduces the cholesterol level and cell functions, suggesting its potential as a therapeutic target in cervical precancerous lesions.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信