Stem Cells Translational Medicine最新文献

筛选
英文 中文
Correction to: Abstract 11: Multicomponent Cord Blood Bank Program, Beyond Transplantation. 更正:摘要 11:多成分脐带血库计划,超越移植。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-24 DOI: 10.1093/stcltm/szae082
{"title":"Correction to: Abstract 11: Multicomponent Cord Blood Bank Program, Beyond Transplantation.","authors":"","doi":"10.1093/stcltm/szae082","DOIUrl":"https://doi.org/10.1093/stcltm/szae082","url":null,"abstract":"","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of microgravity on human iPSC-derived neural organoids on the International Space Station. 微重力对国际空间站上人类 iPSC 衍生神经器官组织的影响。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-23 DOI: 10.1093/stcltm/szae070
Davide Marotta, Laraib Ijaz, Lilianne Barbar, Madhura Nijsure, Jason Stein, Nicolette Pirjanian, Ilya Kruglikov, Twyman Clements, Jana Stoudemire, Paula Grisanti, Scott A Noggle, Jeanne F Loring, Valentina Fossati
{"title":"Effects of microgravity on human iPSC-derived neural organoids on the International Space Station.","authors":"Davide Marotta, Laraib Ijaz, Lilianne Barbar, Madhura Nijsure, Jason Stein, Nicolette Pirjanian, Ilya Kruglikov, Twyman Clements, Jana Stoudemire, Paula Grisanti, Scott A Noggle, Jeanne F Loring, Valentina Fossati","doi":"10.1093/stcltm/szae070","DOIUrl":"https://doi.org/10.1093/stcltm/szae070","url":null,"abstract":"<p><p>Research conducted on the International Space Station (ISS) in low-Earth orbit (LEO) has shown the effects of microgravity on multiple organs. To investigate the effects of microgravity on the central nervous system, we developed a unique organoid strategy for modeling specific regions of the brain that are affected by neurodegenerative diseases. We generated 3-dimensional human neural organoids from induced pluripotent stem cells (iPSCs) derived from individuals affected by primary progressive multiple sclerosis (PPMS) or Parkinson's disease (PD) and non-symptomatic controls, by differentiating them toward cortical and dopaminergic fates, respectively, and combined them with isogenic microglia. The organoids were cultured for a month using a novel sealed cryovial culture method on the International Space Station (ISS) and a parallel set that remained on Earth. Live samples were returned to Earth for analysis by RNA expression and histology and were attached to culture dishes to enable neurite outgrowth. Our results show that both cortical and dopaminergic organoids cultured in LEO had lower levels of genes associated with cell proliferation and higher levels of maturation-associated genes, suggesting that the cells matured more quickly in LEO. This study is continuing with several more missions in order to understand the mechanisms underlying accelerated maturation and to investigate other neurological diseases. Our goal is to make use of the opportunity to study neural cells in LEO to better understand and treat neurodegenerative disease on Earth and to help ameliorate potentially adverse neurological effects of space travel.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring P2X7 receptor antagonism as a therapeutic target for neuroprotection in an hiPSC motor neuron model. 探索在 hiPSC 运动神经元模型中将 P2X7 受体拮抗作为神经保护的治疗靶点。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-17 DOI: 10.1093/stcltm/szae074
Alexandra E Johns, Arens Taga, Andriana Charalampopoulou, Sarah K Gross, Khalil Rust, Brett A McCray, Jeremy M Sullivan, Nicholas J Maragakis
{"title":"Exploring P2X7 receptor antagonism as a therapeutic target for neuroprotection in an hiPSC motor neuron model.","authors":"Alexandra E Johns, Arens Taga, Andriana Charalampopoulou, Sarah K Gross, Khalil Rust, Brett A McCray, Jeremy M Sullivan, Nicholas J Maragakis","doi":"10.1093/stcltm/szae074","DOIUrl":"https://doi.org/10.1093/stcltm/szae074","url":null,"abstract":"<p><p>ATP is present in negligible concentrations in the interstitium of healthy tissues but accumulates to significantly higher concentrations in an inflammatory microenvironment. ATP binds to 2 categories of purine receptors on the surface of cells, the ionotropic P2X receptors and metabotropic P2Y receptors. Included in the family of ionotropic purine receptors is P2X7 (P2X7R), a non-specific cation channel with unique functional and structural properties that suggest it has distinct roles in pathological conditions marked by increased extracellular ATP. The role of P2X7R has previously been explored in microglia and astrocytes within the context of neuroinflammation, however the presence of P2X7R on human motor neurons and its potential role in neurodegenerative diseases has not been the focus of the current literature. We leveraged the use of human iPSC-derived spinal motor neurons (hiPSC-MN) as well as human and rodent tissue to demonstrate the expression of P2X7R on motor neurons. We extend this observation to demonstrate that these receptors are functionally active on hiPSC-MN and that ATP can directly induce death via P2X7R activation in a dose dependent manner. Finally, using a highly specific P2X7R blocker, we demonstrate how modulation of P2X7R activation on motor neurons is neuroprotective and could provide a unique pharmacologic target for ATP-induced MN death that is distinct from the role of ATP as a modulator of neuroinflammation.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in modeling and treating diabetes using stem cell-derived islets. 利用干细胞胰岛建模和治疗糖尿病的最新进展。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae059
Marlie M Maestas, Maggie H Bui, Jeffrey R Millman
{"title":"Recent progress in modeling and treating diabetes using stem cell-derived islets.","authors":"Marlie M Maestas, Maggie H Bui, Jeffrey R Millman","doi":"10.1093/stcltm/szae059","DOIUrl":"10.1093/stcltm/szae059","url":null,"abstract":"<p><p>Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders. 改善新生儿疾病间充质基质细胞疗法的临床试验和转化前景。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae060
Yun Sil Chang, Misun Yang, So Yoon Ahn, Se In Sung, Won Soon Park
{"title":"Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders.","authors":"Yun Sil Chang, Misun Yang, So Yoon Ahn, Se In Sung, Won Soon Park","doi":"10.1093/stcltm/szae060","DOIUrl":"10.1093/stcltm/szae060","url":null,"abstract":"<p><p>Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of compression forces on different mesenchymal stem cell types regarding orthodontic indication. 就正畸适应症而言,压缩力对不同间充质干细胞类型的影响。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae057
Chloé Radermacher, Rogerio B Craveiro, Wilhelm Jahnen-Dechent, Justus P Beier, Astrid Bülow, Michael Wolf, Sabine Neuss
{"title":"Impact of compression forces on different mesenchymal stem cell types regarding orthodontic indication.","authors":"Chloé Radermacher, Rogerio B Craveiro, Wilhelm Jahnen-Dechent, Justus P Beier, Astrid Bülow, Michael Wolf, Sabine Neuss","doi":"10.1093/stcltm/szae057","DOIUrl":"10.1093/stcltm/szae057","url":null,"abstract":"<p><p>The potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type. The cell signaling of extracellular signal-regulated kinase (ERK) and protein kinase B, also called AKT, and their respective phosphorylation shows diverse responses to compression. Additionally, vascular endothelial growth factor and hepatocyte growth factor secretion were reduced under mechanical stress in all cell types, with cell-specific variations. Osteoprotegerin secretion was reduced under compression, particularly in u-PDLSC. At least, diverse soluble receptors of NF-kB-ligand secretion patterns among cell types under pressure were observed, providing crucial insights into bone metabolism. These findings offer a deeper understanding of the behavior of mesenchymal stem cells under mechanical stimuli, highlighting their roles in bone remodeling, wound healing, and tissue regeneration in orthodontic and regenerative medicine contexts. Our results underscore the potential of u-PDLSC, l-PDLSC, and AD-MSC in periodontal regeneration, with AD-MSC showing notable resilience under compression, indicating its promising role for further investigation for orthodontic research. While these findings are encouraging, further research is essential to fully comprehend the mechanism of stem cell-based periodontal therapies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of residual pluripotent stem cells in cell therapy products utilizing droplet digital PCR: an international multisite evaluation study. 利用液滴数字 PCR 检测细胞治疗产品中残留的多能干细胞:一项国际多站点评估研究。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae058
Satoshi Yasuda, Kiyoko Bando, Marianne P Henry, Silvana Libertini, Takeshi Watanabe, Hiroto Bando, Connie Chen, Koki Fujimori, Kosuke Harada, Takuya Kuroda, Myriam Lemmens, Dragos Marginean, David Moss, Lucilia Pereira Mouriès, Nicole S Nicholas, Matthew J K Smart, Orie Terai, Yoji Sato
{"title":"Detection of residual pluripotent stem cells in cell therapy products utilizing droplet digital PCR: an international multisite evaluation study.","authors":"Satoshi Yasuda, Kiyoko Bando, Marianne P Henry, Silvana Libertini, Takeshi Watanabe, Hiroto Bando, Connie Chen, Koki Fujimori, Kosuke Harada, Takuya Kuroda, Myriam Lemmens, Dragos Marginean, David Moss, Lucilia Pereira Mouriès, Nicole S Nicholas, Matthew J K Smart, Orie Terai, Yoji Sato","doi":"10.1093/stcltm/szae058","DOIUrl":"10.1093/stcltm/szae058","url":null,"abstract":"<p><p>The presence of residual undifferentiated pluripotent stem cells (PSCs) in PSC-derived cell therapy products (CTPs) is a major safety issue for their clinical application, due to the potential risk of PSC-derived tumor formation. An international multidisciplinary multisite study to evaluate a droplet digital PCR (ddPCR) approach to detect residual undifferentiated PSCs in PSC-derived CTPs was conducted as part of the Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee. To evaluate the use of ddPCR in quantifying residual iPSCs in a cell sample, different quantities of induced pluripotent stem cells (iPSCs) were spiked into a background of iPSC-derived cardiomyocytes (CMs) to mimic different concentrations of residual iPSCs. A one step reverse transcription ddPCR (RT-ddPCR) was performed to measure mRNA levels of several iPSC-specific markers and to evaluate the assay performance (precision, sensitivity, and specificity) between and within laboratories. The RT-ddPCR assay variability was initially assessed by measuring the same RNA samples across all participating facilities. Subsequently, each facility independently conducted the entire process, incorporating the spiking step, to discern the parameters influencing potential variability. Our results show that a RT-ddPCR assay targeting ESRG, LINC00678, and LIN28A genes offers a highly sensitive and robust detection of impurities of iPSC-derived CMs and that the main contribution to variability between laboratories is the iPSC-spiking procedure, and not the RT-ddPCR. The RT-ddPCR assay would be generally applicable for tumorigenicity evaluation of PSC-derived CTPs with appropriate marker genes suitable for each CTP.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel long noncoding RNA AK029592 contributes to thermogenic adipocyte differentiation. 一种新型长非编码 RNA AK029592 有助于发热性脂肪细胞分化
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae056
Pengyu Hong, Dianri Wang, Yue Wu, Qi Zhang, Pan Liu, Jian Pan, Mei Yu, Weidong Tian
{"title":"A novel long noncoding RNA AK029592 contributes to thermogenic adipocyte differentiation.","authors":"Pengyu Hong, Dianri Wang, Yue Wu, Qi Zhang, Pan Liu, Jian Pan, Mei Yu, Weidong Tian","doi":"10.1093/stcltm/szae056","DOIUrl":"10.1093/stcltm/szae056","url":null,"abstract":"<p><p>Exploration of factors originating from brown adipose tissue that govern the thermogenic adipocyte differentiation is imperative for comprehending the regulatory framework underlying brown fat biogenesis and for devising therapeutic approaches for metabolic disorders associated with obesity. Prior evidence has illuminated the pivotal role of long noncoding RNAs (lncRNAs) in orchestrating thermogenesis within adipose tissue. Here, we aimed to explore and identify the critical lncRNA that could promote thermogenic adipocyte differentiation and to provide a novel strategy to treat obesity-related metabolic diseases in the future. In this study, through amalgamation with our previous lncRNA microarray data from small extracellular vesicles derived from BAT (sEV-BAT), we have identified sEV-BAT-enriched lncRNA AK029592 as a critical constituent of the thermogenic program, which actively fostered beige adipocyte differentiation and enhanced the thermogenic capacities of adipose tissue. Moreover, lncRNA AK029592 could sponge miR-199a-5p in adipocytes to stimulate thermogenic gene expression. Consequently, we concluded lncRNA AK029592 as a crucial lncRNA component of the thermogenic program that regulated beige adipocyte differentiation and white adipose tissue browning, thereby providing a novel therapeutic target and strategy in combating obesity and related metabolic diseases.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryopreserved apoptotic mesenchymal stromal cells retain functional efficacy in suppressing an allergic inflammation in a murine model. 冷冻保存的凋亡间充质基质细胞在抑制小鼠模型中的过敏性炎症方面保留了功能功效。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae061
Richard T Amison, Tik S Cheung, Chiara Giacomini, Yanira Riffo-Vasquez, Antonio Galleu, Roberto Savoldelli, Ryan Hicks, Anna Kozlowska, Francesco Dazzi
{"title":"Cryopreserved apoptotic mesenchymal stromal cells retain functional efficacy in suppressing an allergic inflammation in a murine model.","authors":"Richard T Amison, Tik S Cheung, Chiara Giacomini, Yanira Riffo-Vasquez, Antonio Galleu, Roberto Savoldelli, Ryan Hicks, Anna Kozlowska, Francesco Dazzi","doi":"10.1093/stcltm/szae061","DOIUrl":"10.1093/stcltm/szae061","url":null,"abstract":"<p><p>Mesenchymal stromal cell (MSC) apoptosis is required for in vivo immunosuppression. However, the induction of apoptosis is heavily dependent on the recipient's immune system. In graft-versus-host disease (GvHD), patients who fail to respond to MSCs are in fact those whose immune cells are unable to induce MSC apoptosis ex vivo. The information is critical to explain why responses in clinical trials vary even though the same sources of MSC products are infused. More importantly, it highlights the need for an alternative MSC treatment for the nonresponders. By using a mouse model of ovalbumin (OVA)-induced allergic inflammation, we demonstrated that we could generate apoptotic MSCs (ApoMSCs) in vitro and use them to successfully reduce allergic airway inflammation. In order to address the logistics of their potential future clinical application, we have shown that ApoMSCs could be cryopreserved without impairing efficacy compared to freshly generated ApoMSCs. We have also highlighted that MSCs need to undergo complete apoptosis before cryopreservation to retain their immunosuppressive activity. The cryopreserved ApoMSCs could serve as a potential future off-the-shelf cellular product, in particular for patients who suffer from inflammatory conditions yet do not harbor the immune capacity to induce MSC apoptosis in vivo. Our data provide proof-of-concept that under laboratory conditions, ApoMSCs can be successfully frozen and thawed without affecting their anti-inflammatory activity, as tested in a murine model of allergic inflammation.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: NLRP3 and AIM2 inflammasomes expression is modified by LPS and titanium ions increasing the release of active IL-1β in alveolar bone-derived MSCs. 更正:肺泡骨源性间充质干细胞中的 NLRP3 和 AIM2 炎症小体的表达受 LPS 和钛离子的影响,从而增加了活性 IL-1β 的释放。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae068
{"title":"Correction to: NLRP3 and AIM2 inflammasomes expression is modified by LPS and titanium ions increasing the release of active IL-1β in alveolar bone-derived MSCs.","authors":"","doi":"10.1093/stcltm/szae068","DOIUrl":"10.1093/stcltm/szae068","url":null,"abstract":"","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信