Adipose-mesenchymal stem cells enhance the formation of auricular cartilage in vitro and in vivo.

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING
Dominika Zielinska, Katarzyna Micka-Michalak, Hyrije Ademi, Philip Fisch, Roland Boeni, Thomas Linder, Ueli Moehrlen, Thomas Biedermann, Agnes S Klar
{"title":"Adipose-mesenchymal stem cells enhance the formation of auricular cartilage in vitro and in vivo.","authors":"Dominika Zielinska, Katarzyna Micka-Michalak, Hyrije Ademi, Philip Fisch, Roland Boeni, Thomas Linder, Ueli Moehrlen, Thomas Biedermann, Agnes S Klar","doi":"10.1093/stcltm/szae098","DOIUrl":null,"url":null,"abstract":"<p><p>Patients suffering from microtia have limited treatment options for auricular reconstruction due to donor-site morbidity, complications, and unaesthetic outcome. Therefore, tissue engineering emerged as an alternative therapeutic option. Here, we generated and characterized human auricular cartilage using differentiated human adipose mesenchymal stem cells (hASCs) combined with human auricular chondrocytes. The differentiated hASCs were analysed for their morphology, phenotype, gene, and protein expression of chondrogenic markers, and biochemical composition at different time points in 2D and 3D in vitro. Importantly, we improved conditions for chondrogenic differentiation of hASCs in vitro to enhance their proliferation, survival, and deposition of cartilaginous-matrix proteins. In particular, gene expression analysis revealed an upregulation of cartilage oligomeric matrix protein (COMP) and aggrecan core protein (ACAN) in hASCs using the improved differentiation protocol in vitro. Additionally, we observed that co-seeding of hASCs with chondrocytes in a 1:5 ratio significantly enhanced the de novo auricular cartilage formation in a collagen-I bioink after 8 weeks on immunodeficient rat. In particular, the co-culture resulted in reduced shrinkage, and increased cartilage matrix production as confirmed by GAG deposition in vivo. Our results demonstrate that in co-cultures, hASCs stimulate cartilage formation due to a synergistic effect: hASCs' differentiation into chondrocytes and a trophic effect of hASCs on human auricular chondrocytes. Here we demonstrate the successful use of an hASC-chondrocyte co-culture technique for auricular cartilage tissue engineering in 3D collagen-I bioink. This co-culture approach omits the major drawbacks of traditional cartilage transplantation and thus, represents a fundamental step towards clinical translation.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae098","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Patients suffering from microtia have limited treatment options for auricular reconstruction due to donor-site morbidity, complications, and unaesthetic outcome. Therefore, tissue engineering emerged as an alternative therapeutic option. Here, we generated and characterized human auricular cartilage using differentiated human adipose mesenchymal stem cells (hASCs) combined with human auricular chondrocytes. The differentiated hASCs were analysed for their morphology, phenotype, gene, and protein expression of chondrogenic markers, and biochemical composition at different time points in 2D and 3D in vitro. Importantly, we improved conditions for chondrogenic differentiation of hASCs in vitro to enhance their proliferation, survival, and deposition of cartilaginous-matrix proteins. In particular, gene expression analysis revealed an upregulation of cartilage oligomeric matrix protein (COMP) and aggrecan core protein (ACAN) in hASCs using the improved differentiation protocol in vitro. Additionally, we observed that co-seeding of hASCs with chondrocytes in a 1:5 ratio significantly enhanced the de novo auricular cartilage formation in a collagen-I bioink after 8 weeks on immunodeficient rat. In particular, the co-culture resulted in reduced shrinkage, and increased cartilage matrix production as confirmed by GAG deposition in vivo. Our results demonstrate that in co-cultures, hASCs stimulate cartilage formation due to a synergistic effect: hASCs' differentiation into chondrocytes and a trophic effect of hASCs on human auricular chondrocytes. Here we demonstrate the successful use of an hASC-chondrocyte co-culture technique for auricular cartilage tissue engineering in 3D collagen-I bioink. This co-culture approach omits the major drawbacks of traditional cartilage transplantation and thus, represents a fundamental step towards clinical translation.

脂肪间充质干细胞在体外和体内均能促进耳廓软骨的形成。
由于供体部位的发病率、并发症和不美观的结果,患有小耳畸形的患者进行耳廓重建的治疗选择有限。因此,组织工程作为另一种治疗选择出现了。在这里,我们使用分化的人脂肪间充质干细胞(hASCs)结合人耳廓软骨细胞生成并表征了人耳廓软骨。对分化的hASCs在体外2D和3D不同时间点的形态、表型、基因、软骨标志物蛋白表达和生化组成进行分析。重要的是,我们改善了体外培养hASCs成软骨分化的条件,以增强其增殖、存活和软骨基质蛋白的沉积。特别是,基因表达分析显示,使用改进的体外分化方案,软骨寡聚基质蛋白(COMP)和聚集蛋白核心蛋白(ACAN)在hASCs中上调。此外,我们观察到,在免疫缺陷大鼠8周后,以1:5的比例将hASCs与软骨细胞共种可显著增强胶原- i生物链中耳廓软骨的新生形成。特别是,共培养减少了收缩,并增加了软骨基质的产生,这一点得到了体内GAG沉积的证实。我们的研究结果表明,在共培养中,由于协同效应,hASCs刺激软骨形成:hASCs分化为软骨细胞和hASCs对人耳软骨细胞的营养作用。在这里,我们展示了hasc -软骨细胞共培养技术在3D胶原- i生物链接中用于耳廓软骨组织工程的成功应用。这种共培养方法忽略了传统软骨移植的主要缺点,因此,代表了临床转化的基本步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信