Dominika Zielinska, Katarzyna Micka-Michalak, Hyrije Ademi, Philip Fisch, Roland Boeni, Thomas Linder, Ueli Moehrlen, Thomas Biedermann, Agnes S Klar
{"title":"Adipose-mesenchymal stem cells enhance the formation of auricular cartilage in vitro and in vivo.","authors":"Dominika Zielinska, Katarzyna Micka-Michalak, Hyrije Ademi, Philip Fisch, Roland Boeni, Thomas Linder, Ueli Moehrlen, Thomas Biedermann, Agnes S Klar","doi":"10.1093/stcltm/szae098","DOIUrl":null,"url":null,"abstract":"<p><p>Patients suffering from microtia have limited treatment options for auricular reconstruction due to donor-site morbidity, complications, and unaesthetic outcome. Therefore, tissue engineering emerged as an alternative therapeutic option. Here, we generated and characterized human auricular cartilage using differentiated human adipose mesenchymal stem cells (hASCs) combined with human auricular chondrocytes. The differentiated hASCs were analysed for their morphology, phenotype, gene, and protein expression of chondrogenic markers, and biochemical composition at different time points in 2D and 3D in vitro. Importantly, we improved conditions for chondrogenic differentiation of hASCs in vitro to enhance their proliferation, survival, and deposition of cartilaginous-matrix proteins. In particular, gene expression analysis revealed an upregulation of cartilage oligomeric matrix protein (COMP) and aggrecan core protein (ACAN) in hASCs using the improved differentiation protocol in vitro. Additionally, we observed that co-seeding of hASCs with chondrocytes in a 1:5 ratio significantly enhanced the de novo auricular cartilage formation in a collagen-I bioink after 8 weeks on immunodeficient rat. In particular, the co-culture resulted in reduced shrinkage, and increased cartilage matrix production as confirmed by GAG deposition in vivo. Our results demonstrate that in co-cultures, hASCs stimulate cartilage formation due to a synergistic effect: hASCs' differentiation into chondrocytes and a trophic effect of hASCs on human auricular chondrocytes. Here we demonstrate the successful use of an hASC-chondrocyte co-culture technique for auricular cartilage tissue engineering in 3D collagen-I bioink. This co-culture approach omits the major drawbacks of traditional cartilage transplantation and thus, represents a fundamental step towards clinical translation.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae098","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Patients suffering from microtia have limited treatment options for auricular reconstruction due to donor-site morbidity, complications, and unaesthetic outcome. Therefore, tissue engineering emerged as an alternative therapeutic option. Here, we generated and characterized human auricular cartilage using differentiated human adipose mesenchymal stem cells (hASCs) combined with human auricular chondrocytes. The differentiated hASCs were analysed for their morphology, phenotype, gene, and protein expression of chondrogenic markers, and biochemical composition at different time points in 2D and 3D in vitro. Importantly, we improved conditions for chondrogenic differentiation of hASCs in vitro to enhance their proliferation, survival, and deposition of cartilaginous-matrix proteins. In particular, gene expression analysis revealed an upregulation of cartilage oligomeric matrix protein (COMP) and aggrecan core protein (ACAN) in hASCs using the improved differentiation protocol in vitro. Additionally, we observed that co-seeding of hASCs with chondrocytes in a 1:5 ratio significantly enhanced the de novo auricular cartilage formation in a collagen-I bioink after 8 weeks on immunodeficient rat. In particular, the co-culture resulted in reduced shrinkage, and increased cartilage matrix production as confirmed by GAG deposition in vivo. Our results demonstrate that in co-cultures, hASCs stimulate cartilage formation due to a synergistic effect: hASCs' differentiation into chondrocytes and a trophic effect of hASCs on human auricular chondrocytes. Here we demonstrate the successful use of an hASC-chondrocyte co-culture technique for auricular cartilage tissue engineering in 3D collagen-I bioink. This co-culture approach omits the major drawbacks of traditional cartilage transplantation and thus, represents a fundamental step towards clinical translation.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.