基于ADAR的RNA编辑的新兴临床应用。

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING
Joseph Rainaldi, Prashant Mali, Sami Nourreddine
{"title":"基于ADAR的RNA编辑的新兴临床应用。","authors":"Joseph Rainaldi, Prashant Mali, Sami Nourreddine","doi":"10.1093/stcltm/szaf016","DOIUrl":null,"url":null,"abstract":"<p><p>RNA editing via adenosine deaminases acting on RNA (ADARs) offers precise and reversible modifications at the RNA level, complementing traditional DNA-targeting therapies. ADAR enzymes catalyze the conversion of adenosine to inosine within double-stranded RNA, influencing critical cellular processes such as translation, splicing, and RNA stability. Utilizing endogenous ADARs guided by exogenous guide RNAs enables site-specific RNA editing without the need for transgenic editor expression, minimizing immunogenicity, and enhancing control over gene expression. Towards addressing the challenges in ensuring specificity, optimizing delivery methods, and navigating regulatory landscapes, ongoing innovations in guide RNA design, delivery technologies, and computational modeling are propelling the field forward. Already, initial clinical advancements are demonstrating the potential of ADAR-mediated RNA editing in treating human diseases. Collaborative efforts among researchers, clinicians, and industry partners are overcoming existing hurdles, progressively positioning ADAR-mediated RNA editing to revolutionize personalized medicine and provide effective treatments for a wide array of historically intractable diseases.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105611/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emerging clinical applications of ADAR based RNA editing.\",\"authors\":\"Joseph Rainaldi, Prashant Mali, Sami Nourreddine\",\"doi\":\"10.1093/stcltm/szaf016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA editing via adenosine deaminases acting on RNA (ADARs) offers precise and reversible modifications at the RNA level, complementing traditional DNA-targeting therapies. ADAR enzymes catalyze the conversion of adenosine to inosine within double-stranded RNA, influencing critical cellular processes such as translation, splicing, and RNA stability. Utilizing endogenous ADARs guided by exogenous guide RNAs enables site-specific RNA editing without the need for transgenic editor expression, minimizing immunogenicity, and enhancing control over gene expression. Towards addressing the challenges in ensuring specificity, optimizing delivery methods, and navigating regulatory landscapes, ongoing innovations in guide RNA design, delivery technologies, and computational modeling are propelling the field forward. Already, initial clinical advancements are demonstrating the potential of ADAR-mediated RNA editing in treating human diseases. Collaborative efforts among researchers, clinicians, and industry partners are overcoming existing hurdles, progressively positioning ADAR-mediated RNA editing to revolutionize personalized medicine and provide effective treatments for a wide array of historically intractable diseases.</p>\",\"PeriodicalId\":21986,\"journal\":{\"name\":\"Stem Cells Translational Medicine\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105611/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stcltm/szaf016\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szaf016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

通过作用于RNA的腺苷脱氨酶(ADARs)进行RNA编辑,在RNA水平上提供了精确和可逆的修饰,补充了传统的dna靶向治疗。ADAR酶催化双链RNA内腺苷向肌苷的转化,影响关键的细胞过程,如翻译、剪接和RNA稳定性。利用外源引导RNA引导的内源性ADARs,无需转基因编辑器表达,即可实现位点特异性RNA编辑,最大限度地降低免疫原性,增强对基因表达的控制。为了解决在确保特异性、优化递送方法和导航监管景观方面的挑战,向导RNA设计、递送技术和计算建模方面的持续创新正在推动该领域向前发展。初步的临床进展已经证明了adar介导的RNA编辑在治疗人类疾病方面的潜力。研究人员、临床医生和行业合作伙伴之间的合作努力正在克服现有的障碍,逐步定位adar介导的RNA编辑,以彻底改变个性化医疗,并为一系列历史上难治性疾病提供有效的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging clinical applications of ADAR based RNA editing.

RNA editing via adenosine deaminases acting on RNA (ADARs) offers precise and reversible modifications at the RNA level, complementing traditional DNA-targeting therapies. ADAR enzymes catalyze the conversion of adenosine to inosine within double-stranded RNA, influencing critical cellular processes such as translation, splicing, and RNA stability. Utilizing endogenous ADARs guided by exogenous guide RNAs enables site-specific RNA editing without the need for transgenic editor expression, minimizing immunogenicity, and enhancing control over gene expression. Towards addressing the challenges in ensuring specificity, optimizing delivery methods, and navigating regulatory landscapes, ongoing innovations in guide RNA design, delivery technologies, and computational modeling are propelling the field forward. Already, initial clinical advancements are demonstrating the potential of ADAR-mediated RNA editing in treating human diseases. Collaborative efforts among researchers, clinicians, and industry partners are overcoming existing hurdles, progressively positioning ADAR-mediated RNA editing to revolutionize personalized medicine and provide effective treatments for a wide array of historically intractable diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信