SpectroscopyPub Date : 2022-12-01DOI: 10.56530/spectroscopy.sc1575j6
F. Adar
{"title":"Exploration of the Use of Raman Microscopy to the Identification of Extractables and Leachables from Polymeric Containers","authors":"F. Adar","doi":"10.56530/spectroscopy.sc1575j6","DOIUrl":"https://doi.org/10.56530/spectroscopy.sc1575j6","url":null,"abstract":"In a follow-up to my February 2020 column, I started a more systematic study of extractables and leachables. Following a suggestion from Mark Witkowski of the FDA, I looked at three sets of centrifuge vials that were exposed to the following liquids in an effort to evaluate the potential of Raman microscopy to identify compounds exiting in polymers under particular conditions: saline, phosphate buffer, water, saline treatment at 100 0C, phosphate buffer treatment at 100 0C, water treatment at 100 0C, ethanol, chloroform, pH 5, and pH 9. Although all containers were made of polypropylene (PP), they didn’t behave similarly. Compounds that were extracted from PP vials from different manufacturers were not always the same. Although the number of spectral types that are recorded is large, this article focuses on a few whose interpretation is interesting. The goal was to figure out when it makes sense to employ Raman microscopy for such identification. The characteristics considered were ease of sample preparation, the minimum quantity of material amenable to analysis, and the quality of the identification.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76514125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2022-12-01DOI: 10.56530/spectroscopy.ag1869d9
Kaiyu Zhang, Yuxin Sang, Qinxing Sun, Weina Li
{"title":"Colorimetric Discrimination of Pd2+ and Hg2+ Ions in Solvent and Solid-Film State Using Organic Acid-Assisted Green Synthesized Silver Nanoparticles","authors":"Kaiyu Zhang, Yuxin Sang, Qinxing Sun, Weina Li","doi":"10.56530/spectroscopy.ag1869d9","DOIUrl":"https://doi.org/10.56530/spectroscopy.ag1869d9","url":null,"abstract":"In this study, a colorimetric discrimination of Pd2+ and Hg2+ ions in the solvent and solid film states in one silver nanoparticles (AgNPs) sensing system is presented. First, silver nanoparticles were prepared by reducing AgNO3 with sodium borohydride in the presence of chitosan and different organic acids, including acetic acid, propanedioic acid, and citric acid. The addition of different organic acids allowed for the surface plasmon resonance (SPR) intensity and size distribution of AgNPs to be adjusted. Chitosan acts as a stabilizer and complexing agent, endowing AgNPs excellent film-forming properties. Then, the chitosan-stabilized AgNPs in the solvent and solid-film state are used to detect metal ions. In the presence of Hg2+ and Pd2+ ions, the color of the AgNP solution changed rapidly from pale yellow to colorless and light brown, respectively. The characteristic SPR peaks of the AgNPs also disappeared completely, and the solid films of AgNPs with a yellowish-brown color also change rapidly to colorless and dark brown with the addition of Hg2+ and Pd2+ ions, respectively. The discrimination of Hg2+ and Pd2+ ions can be clearly observed in both the solvent and the solid film state. However, the addition of other metal ions cannot change the color of the AgNPs.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85430068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2022-12-01DOI: 10.56530/spectroscopy.nj6365j3
Jerry Workman
{"title":"A Survey of Basic Instrument Components Used in Spectroscopy, Part 4: Instrument Services and Testing","authors":"Jerry Workman","doi":"10.56530/spectroscopy.nj6365j3","DOIUrl":"https://doi.org/10.56530/spectroscopy.nj6365j3","url":null,"abstract":"In this Part 4 survey article describing instrument services and testing, we look into spectroscopy electronics, including printed circuit board (PCB) design and manufacturing, a description of spectroscopy instrument design services, a summary of instrument testing services, and a description of the firmware and software aspects of instrumentation. This is the final installment of our four-part instrument component survey series. As promised, we have published tutorial articles, and posted the The Spectroscopy Instrument Components Terminology Guide. We hope our readers found these articles helpful for our “under the hood” look into spectroscopy instrumentation.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90779094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2022-12-01DOI: 10.56530/spectroscopy.xn9369p8
B. Smith
{"title":"Infrared Spectroscopy of Polymers, IX: Pendant Ester Polymers and Polycarbonates","authors":"B. Smith","doi":"10.56530/spectroscopy.xn9369p8","DOIUrl":"https://doi.org/10.56530/spectroscopy.xn9369p8","url":null,"abstract":"We continue our survey of the spectra of carbonyl-containing polymers by looking at the spectrum of cellulose acetate. What makes cellulose acetate unique is that it is a carbohydrate molecule that is reacted to obtain pendant ester groups. I will also introduce you to polycarbonates. Carbonates are a carbonyl-containing functional group that contain three oxygen atoms. An example of an economically important polycarbonate is Lexan, which is made into windows and car parts. In this column, we examine its spectrum in detail.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76335946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2022-11-01DOI: 10.56530/spectroscopy.lz8466z5
Richard A. Crocombe
{"title":"Spectrometers in Wonderland: Shrinking, Shrinking, Shrinking","authors":"Richard A. Crocombe","doi":"10.56530/spectroscopy.lz8466z5","DOIUrl":"https://doi.org/10.56530/spectroscopy.lz8466z5","url":null,"abstract":"This article gives a brief overview of the major portable techniques: those based on optical spectroscopy techniques, including near-infrared (NIR), mid-infrared (mid-IR), and Raman spectroscopy; mass spectrometry (MS) systems, including high-pressure MS (HPMS), gas chromatography–MS (GC–MS), ion mobility spectrometry (IMS); elemental techniques, such as X-ray fluorescence (XRF) and laser-induced breakdown spectroscopy (LIBS); and emerging miniaturized techniques like nuclear magnetic resonance (NMR). The above are all “conventional” spectroscopic techniques and reduced to a rugged portable format, containing self-contained data systems. They provide specific and actionable information to their operators working with them outside the laboratory—in the field—and these instruments have well-defined value propositions. A recent development is the availability of low cost (<$100) multispectral sensors operating in the visible and NIR regions. This low cost enables the sensors to be embedded into consumer products, such as smart “white goods” appliances, personal care, fitness products, and even “wearables” products. In the future, miniature and portable spectrometers will be ubiquitous—outside the laboratory, and in your home and pocket.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73529167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2022-11-01DOI: 10.56530/spectroscopy.yd5989g6
F. Ou, A. van Klinken, K. Hakkel, M. Petruzzella, Don M. J. van Elst, P. Sevo, Chenhui Li, F. Pagliano, R. V. van Veldhoven, A. Fiore
{"title":"Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip","authors":"F. Ou, A. van Klinken, K. Hakkel, M. Petruzzella, Don M. J. van Elst, P. Sevo, Chenhui Li, F. Pagliano, R. V. van Veldhoven, A. Fiore","doi":"10.56530/spectroscopy.yd5989g6","DOIUrl":"https://doi.org/10.56530/spectroscopy.yd5989g6","url":null,"abstract":"Near-infrared (NIR) spectroscopy is widely used for the classification of materials and the quantification of their properties. Today, there is a high demand for extending the use of this technique to portable applications, and eventually, the integration with consumer appliances and smartphones. To reach this goal, the overall size of the NIR sensor, its production cost, robustness, and resistance to vibrations are of particular importance. This paper describes an approach to spectral sensing in the NIR (850–1700 nm) using a handheld sensor module based on a fully integrated multipixel detector array with a footprint of around 2×2 mm2. The capabilities of the spectral sensor module were recently evaluated in two application cases: Quantification of the fat percentage in raw milk and the classification of plastic types. Fat quantification was achieved with a root mean square error (RMSE) of prediction of 0.14% and classification of plastic types was achieved with a prediction accuracy on unknown samples of 100%. The results demonstrate the feasibility of the direct NIR sensing approach used by the integrated sensor, which has potential to be used in a variety of applications.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88056539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2022-11-01DOI: 10.56530/spectroscopy.va1382h7
Ziniu Zhao, Hui Yan, H. Siesler
{"title":"Rapid Determination of the Peroxide Value of Edible Oil by Handheld NIR Spectroscopy in Combination with Wavelength Variables Selection and PLS Calibration","authors":"Ziniu Zhao, Hui Yan, H. Siesler","doi":"10.56530/spectroscopy.va1382h7","DOIUrl":"https://doi.org/10.56530/spectroscopy.va1382h7","url":null,"abstract":"Detecting the peroxide value (PV) in oil is significant for people in everyday life, especially as a fast, convenient, and on-site method. To tackle this challenge, the near-infrared (NIR) spectra of oil were collected by a Viavi MicroNIR 1700 handheld NIR spectrometer and a liquid sample transmission accessory. Subsequently to the spectral pretreatment method of standard normal variate (SNV), the sensitive wavelength variables were optimized by the algorithms of competitive adaptive reweighted sampling (CARS), genetic algorithms (GA), and random frog (RF). The results showed that CARS was the best, and the selected variables were used to build the partial least squares (PLS) regression model. The root mean square error (RMSE) values for cross-validation (RMSECV) and prediction (RMSEP) were 0.984 mmol/ kg and 0.950 mmol/kg, respectively, and the corresponding R2cv and R2P were 0.875, and 0.867, respectively. Therefore, the PV of edible oil can be determined easily and quickly with a handheld NIR spectrometer.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85365635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2022-11-01DOI: 10.56530/spectroscopy.cs9787u9
Megan Wilson, D. Al-Jumeily, J. Birkett, Iftikhar Khan, Ismail Abbas, S. Assi
{"title":"Using Handheld Raman Spectroscopy Equipped with Orbital Raster Technology for Field Detection of Cocaine and its Impurities in Fingernails","authors":"Megan Wilson, D. Al-Jumeily, J. Birkett, Iftikhar Khan, Ismail Abbas, S. Assi","doi":"10.56530/spectroscopy.cs9787u9","DOIUrl":"https://doi.org/10.56530/spectroscopy.cs9787u9","url":null,"abstract":"Fingernails can accumulate drugs as a result of chronic exposure. This work employed Raman spectroscopy for detecting cocaine hydrochloride (HCl) and its impurities within fingernails, utilizing orbital raster scanning (ORS) technology, where the laser beam hits multiple positions within the sample. Doing so maintained sensitivity and ensured that more of each sample’s components were represented. Fingernails were spiked with powder and solution forms of cocaine HCl and its impurities, including benzocaine HCl, levamisole HCl, lidocaine HCl, and procaine HCl. The strong Raman scattering observed for these substances indicated a high drug accumulation in the fingernails. Key cocaine HCl bands were seen at 848, 874, and 898 cm-1 (C-C stretching-tropane ring), 1004 cm-1 (symmetric stretching-aromatic ring), 1278 cm-1 (C-N stretching), 1453 cm-1 (asymmetric CH3 deformation), and 1605 and 1712 cm-1 (C=C and C=O stretching). Principal components analysis (PCA) confirmed that 90% (nails spiked with drug powders) and 77.2% (nails spiked with drug solutions) were accounted for in the variance among the data. The findings showed that Raman spectroscopy identified the presence of cocaine HCl and its impurities within fingernails.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86943382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2022-11-01DOI: 10.56530/spectroscopy.qz5173x6
S. Schill, R. S. McEwan, R. Moffet, J. Marrero, C. Macdonald, E. Winegar
{"title":"Real-World Application of Open-Path UV-DOAS, TDL, and FT-IR Spectroscopy for Air Quality Monitoring at Industrial Facilities","authors":"S. Schill, R. S. McEwan, R. Moffet, J. Marrero, C. Macdonald, E. Winegar","doi":"10.56530/spectroscopy.qz5173x6","DOIUrl":"https://doi.org/10.56530/spectroscopy.qz5173x6","url":null,"abstract":"Open-path spectroscopy is known for its ability to provide real-time measurements of dozens of compounds over sampling paths of up to 1000 meters in length. Advances in open-path monitoring technology and data processing techniques, coupled with new regulatory requirements, have greatly increased the acceptance and widespread application of spectroscopy-based open-path measurements. Large industrial facilities adjacent to residential communities are a particular application of interest, because traditional fixed-point analyzers lack the spatial coverage of the open-path instruments. This work discusses technical and practical considerations for the installation and operation of more than 120 open-path analyzers that are currently providing continuous data at several oil refineries in California. Open-path analyzers include ultraviolet differential optical absorbance spectroscopy (UV-DOAS), Fourier transform infrared (FT-IR), and tunable diode laser (TDL) technologies. We will discuss lessons learned from these projects, including fundamental approaches to compound identification, target species detectability, interferences, and data management.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78123730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2022-11-01DOI: 10.56530/spectroscopy.sh9983a2
M. Jackson, Douglas J Perrelli, Jacob T. Shelley, M. K. Donais
{"title":"An Archaeometric Investigation into the Former Cataract House Hotel via Elemental Analysis","authors":"M. Jackson, Douglas J Perrelli, Jacob T. Shelley, M. K. Donais","doi":"10.56530/spectroscopy.sh9983a2","DOIUrl":"https://doi.org/10.56530/spectroscopy.sh9983a2","url":null,"abstract":"Over the course of the 19th century, the former Cataract House Hotel of Niagara Falls, New York, became one of the largest hotels in the region while also serving as an important “station” on the Underground Railroad. A park now occupies the area covering its demolished ruins. Since 2017, archaeological excavations of the site have taken place, led by the Anthropology Department at SUNY Buffalo. Although much is known about the overall design of the Cataract House Hotel, a clearer understanding of its construction phases, as well as its role in the Underground Railroad, could be determined from spectroscopic analysis in tandem with ongoing archaeological investigations. In 2022, in situ data collection was performed on plaster walls at the excavation site using a portable X-ray fluorescence (pXRF) instrument. These elemental data were used in conjunction with archaeological information to form conclusions regarding different construction phases of the hotel. Samples of plaster walls were also collected for further ex situ analyses with pXRF and portable laser-induced breakdown spectroscopy (pLIBS) in a laboratory setting. Future work will include data collection and analysis by additional spectroscopic methods of other artifacts collected at the site, such as pigment samples removed from an unearthed stone step.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75096105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}