{"title":"Analysis of Desalination Discharge Brines for Elements of Environmental and Economic Importance with ICP-OES","authors":"K. Neubauer","doi":"10.56530/spectroscopy.ud4983c8","DOIUrl":null,"url":null,"abstract":"Desalination has been growing rapidly globally to meet the potable water demands in areas where access to fresh water is limited. The byproduct of desalination is a brine that has a salinity approximately two times higher than seawater and is usually discharged back to the ocean, where it can have a negative environmental impact, especially if harmful elements were picked up during the desalination process. However, this brine has recently begun to be viewed as a resource where elements of economic and industrial importance can be recovered. Both these applications rely on the accurate analysis of various elements in the brine, which can be accomplished with inductively coupled plasma–optical emission spectroscopy (ICP-OES), given its high matrix tolerance and flexibility. This work demonstrates the accurate analysis of desalination discharge brines for elements of both environmental and economic importance using ICP-OES.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.56530/spectroscopy.ud4983c8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Desalination has been growing rapidly globally to meet the potable water demands in areas where access to fresh water is limited. The byproduct of desalination is a brine that has a salinity approximately two times higher than seawater and is usually discharged back to the ocean, where it can have a negative environmental impact, especially if harmful elements were picked up during the desalination process. However, this brine has recently begun to be viewed as a resource where elements of economic and industrial importance can be recovered. Both these applications rely on the accurate analysis of various elements in the brine, which can be accomplished with inductively coupled plasma–optical emission spectroscopy (ICP-OES), given its high matrix tolerance and flexibility. This work demonstrates the accurate analysis of desalination discharge brines for elements of both environmental and economic importance using ICP-OES.
期刊介绍:
Spectroscopy welcomes manuscripts that describe techniques and applications of all forms of spectroscopy and that are of immediate interest to users in industry, academia, and government.