{"title":"Editorial on “Vascular cell fate in health and disease”","authors":"Christine Cheung","doi":"10.1016/j.semcdb.2023.09.004","DOIUrl":"10.1016/j.semcdb.2023.09.004","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"155 ","pages":"Pages 1-2"},"PeriodicalIF":7.3,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41166116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Better late than never: A unique strategy for late gene transcription in the beta- and gammaherpesviruses","authors":"Sarah E. Dremel , Allison L. Didychuk","doi":"10.1016/j.semcdb.2022.12.001","DOIUrl":"10.1016/j.semcdb.2022.12.001","url":null,"abstract":"<div><p>During lytic replication, herpesviruses<span><span> express their genes in a temporal cascade culminating in expression of “late” genes. Two subfamilies of herpesviruses, the beta- and gammaherpesviruses (including human herpesviruses cytomegalovirus, Epstein-Barr virus, and Kaposi’s sarcoma-associated herpesvirus), use a unique strategy to facilitate transcription of late genes. They encode six essential viral </span>transcriptional activators<span><span> (vTAs) that form a complex at a subset of late gene promoters. One of these vTAs is a viral mimic of host TATA-binding protein (vTBP) that recognizes a strikingly minimal cis-acting element consisting of a modified TATA box with a TATTWAA consensus sequence. vTBP is also responsible for recruitment of cellular </span>RNA polymerase II<span> (Pol II). Despite extensive work in the beta/gammaherpesviruses, the function of the other five vTAs remains largely unknown. The vTA complex and Pol II assemble on the promoter into a viral preinitiation complex (vPIC) to facilitate late gene transcription. Here, we review the properties of the vTAs and the promoters on which they act.</span></span></span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"146 ","pages":"Pages 57-69"},"PeriodicalIF":7.3,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9675825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah E. Dremel , Ariana R. Jimenez , Jessica M. Tucker
{"title":"“Transfer” of power: The intersection of DNA virus infection and tRNA biology","authors":"Sarah E. Dremel , Ariana R. Jimenez , Jessica M. Tucker","doi":"10.1016/j.semcdb.2023.01.011","DOIUrl":"10.1016/j.semcdb.2023.01.011","url":null,"abstract":"<div><p>Transfer RNAs (tRNAs) are at the heart of the molecular biology<span> central dogma, functioning to decode messenger RNAs into proteins. As obligate intracellular parasites, viruses depend on the host translation machinery, including host tRNAs. Thus, the ability of a virus to fine-tune tRNA expression elicits the power to impact the outcome of infection. DNA viruses<span><span> commonly upregulate the output of RNA polymerase III (Pol III)-dependent transcripts, including tRNAs. Decades after these initial discoveries we know very little about how mature tRNA pools change during viral infection, as </span>tRNA sequencing methodology has only recently reached proficiency. Here, we review perturbation of tRNA biogenesis by DNA virus infection, including an emerging player called tRNA-derived fragments (tRFs). We discuss how tRNA dysregulation shifts the power landscape between the host and virus, highlighting the potential for tRNA-based antivirals as a future therapeutic.</span></span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"146 ","pages":"Pages 31-39"},"PeriodicalIF":7.3,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Good cop, bad cop: Polyamines play both sides in host immunity and viral replication","authors":"Yazmin E. Cruz-Pulido , Bryan C. Mounce","doi":"10.1016/j.semcdb.2022.12.004","DOIUrl":"10.1016/j.semcdb.2022.12.004","url":null,"abstract":"<div><p><span>Viruses rely on host cells for energy and synthesis machinery required for genome replication and particle assembly. Due to the dependence of viruses on host cells, viruses have evolved multiple mechanisms by which they can induce metabolic changes in the host cell to suit their specific requirements. The host immune response also involves metabolic changes to be able to react to viral insult. Polyamines are small ubiquitously expressed polycations, and their metabolism is critical for viral replication and an adequate host immune response. This is due to the variety of functions that polyamines have, ranging from condensing DNA to enhancing the translation of polyproline-containing proteins through the hypusination of </span>eIF5A<span>. Here, we review the diverse mechanisms by which viruses exploit polyamines, as well as the mechanisms by which immune cells utilize polyamines for their functions. Furthermore, we highlight potential avenues for further study of the host-virus interface.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"146 ","pages":"Pages 70-79"},"PeriodicalIF":7.3,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9325464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict","authors":"Joshua T. Mann , Brent A. Riley , Steven F. Baker","doi":"10.1016/j.semcdb.2023.01.013","DOIUrl":"10.1016/j.semcdb.2023.01.013","url":null,"abstract":"<div><p><span>Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host </span>transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"146 ","pages":"Pages 40-56"},"PeriodicalIF":7.3,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9676319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shaping the host cell environment with viral noncoding RNAs","authors":"Carlos Gorbea, Abdalla Elhakiem, Demián Cazalla","doi":"10.1016/j.semcdb.2022.12.008","DOIUrl":"10.1016/j.semcdb.2022.12.008","url":null,"abstract":"<div><p>Just like the cells they infect viruses express different classes of noncoding RNAs<span> (ncRNAs). Viral ncRNAs come in all shapes and forms, and they usually associate with cellular proteins that are important for their functions. Viral ncRNAs have diverse functions, but they all contribute to the viral control of the cellular environment. Viruses utilize ncRNAs to regulate viral replication, to decide whether they should remain latent or reactivate, to evade the host immune responses, or to promote cellular transformation. In this review we describe the diverse functions played by different classes of ncRNAs expressed by adenoviruses<span> and herpesviruses, how they contribute to the viral infection, and how their study led to insights into RNA-based mechanisms at play in host cells.</span></span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"146 ","pages":"Pages 20-30"},"PeriodicalIF":7.3,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101873/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9376294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Viral miRNA regulation of host gene expression","authors":"Nicole L. Diggins, Meaghan H. Hancock","doi":"10.1016/j.semcdb.2022.11.007","DOIUrl":"10.1016/j.semcdb.2022.11.007","url":null,"abstract":"<div><p><span>Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate </span>protein expression<span> but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"146 ","pages":"Pages 2-19"},"PeriodicalIF":7.3,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9319716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control of coronary vascular cell fate in development and regeneration","authors":"Ian R. McCracken, Nicola Smart","doi":"10.1016/j.semcdb.2023.08.005","DOIUrl":"10.1016/j.semcdb.2023.08.005","url":null,"abstract":"<div><p>The coronary vasculature consists of a complex hierarchal network of arteries, veins, and capillaries which collectively function to perfuse the myocardium. However, the pathways controlling the temporally and spatially restricted mechanisms underlying the formation of this vascular network remain poorly understood. In recent years, the increasing use and refinement of transgenic mouse models has played an instrumental role in offering new insights into the cellular origins of the coronary vasculature, as well as identifying a continuum of transitioning cell states preceding the full maturation of the coronary vasculature. Coupled with the emergence of single cell RNA sequencing platforms, these technologies have begun to uncover the key regulatory factors mediating the convergence of distinct cellular origins to ensure the formation of a collectively functional, yet phenotypically diverse, vascular network. Furthermore, improved understanding of the key regulatory factors governing coronary vessel formation in the embryo may provide crucial clues into future therapeutic strategies to reactivate these developmentally functional mechanisms to drive the revascularisation of the ischaemic adult heart.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"155 ","pages":"Pages 50-61"},"PeriodicalIF":7.3,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10265619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}