{"title":"所有鸡蛋放在一个篮子里:如何在一个帽独立的翻译事件中控制痘病毒感染","authors":"Helena Jaramillo-Mesa, Aurélie M. Rakotondrafara","doi":"10.1016/j.semcdb.2022.12.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>Regulation of protein synthesis is a strong determinant of potyviral pathogenicity. The </span><span><em>Potyviridae</em></span><span> family is the largest family of plant-infecting positive sense RNA viruses. Similar to the animal-infecting </span><span><em>Picornaviridae</em></span><span> family, the potyviral RNA<span> genome lacks a 5′ cap, and instead has a viral protein (VPg) linked to its 5′ end. Potyviral genomes are mainly translated into one large polyprotein relying on a single translation event to express all their protein repertoire. In the absence of the 5′ cap, the </span></span><em>Potyviridae</em> family depends on <em>cis</em><span>-acting elements in their 5′ untranslated regions (UTR) to recruit the translation machinery. In this review, we summarize the diverse 5′UTR-driven, cap-independent translation mechanisms employed by the </span><em>Potyviridae</em><span> family including scanning-dependent mechanism, internal initiation, and the stimulatory role of the VPg. These mechanisms have direct implications on potyviral pathogenicity, including host range specificity and resistance. Finally, we discuss how these viral strategies could not only inform new avenues for engineering and/or breeding for crop resistance but would also provide opportunities for the development of biotechnological tools for large-scale protein production in plant systems.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"148 ","pages":"Pages 51-61"},"PeriodicalIF":6.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"All eggs in one basket: How potyvirus infection is controlled at a single cap-independent translation event\",\"authors\":\"Helena Jaramillo-Mesa, Aurélie M. Rakotondrafara\",\"doi\":\"10.1016/j.semcdb.2022.12.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Regulation of protein synthesis is a strong determinant of potyviral pathogenicity. The </span><span><em>Potyviridae</em></span><span> family is the largest family of plant-infecting positive sense RNA viruses. Similar to the animal-infecting </span><span><em>Picornaviridae</em></span><span> family, the potyviral RNA<span> genome lacks a 5′ cap, and instead has a viral protein (VPg) linked to its 5′ end. Potyviral genomes are mainly translated into one large polyprotein relying on a single translation event to express all their protein repertoire. In the absence of the 5′ cap, the </span></span><em>Potyviridae</em> family depends on <em>cis</em><span>-acting elements in their 5′ untranslated regions (UTR) to recruit the translation machinery. In this review, we summarize the diverse 5′UTR-driven, cap-independent translation mechanisms employed by the </span><em>Potyviridae</em><span> family including scanning-dependent mechanism, internal initiation, and the stimulatory role of the VPg. These mechanisms have direct implications on potyviral pathogenicity, including host range specificity and resistance. Finally, we discuss how these viral strategies could not only inform new avenues for engineering and/or breeding for crop resistance but would also provide opportunities for the development of biotechnological tools for large-scale protein production in plant systems.</span></p></div>\",\"PeriodicalId\":21735,\"journal\":{\"name\":\"Seminars in cell & developmental biology\",\"volume\":\"148 \",\"pages\":\"Pages 51-61\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cell & developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084952122003792\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952122003792","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
All eggs in one basket: How potyvirus infection is controlled at a single cap-independent translation event
Regulation of protein synthesis is a strong determinant of potyviral pathogenicity. The Potyviridae family is the largest family of plant-infecting positive sense RNA viruses. Similar to the animal-infecting Picornaviridae family, the potyviral RNA genome lacks a 5′ cap, and instead has a viral protein (VPg) linked to its 5′ end. Potyviral genomes are mainly translated into one large polyprotein relying on a single translation event to express all their protein repertoire. In the absence of the 5′ cap, the Potyviridae family depends on cis-acting elements in their 5′ untranslated regions (UTR) to recruit the translation machinery. In this review, we summarize the diverse 5′UTR-driven, cap-independent translation mechanisms employed by the Potyviridae family including scanning-dependent mechanism, internal initiation, and the stimulatory role of the VPg. These mechanisms have direct implications on potyviral pathogenicity, including host range specificity and resistance. Finally, we discuss how these viral strategies could not only inform new avenues for engineering and/or breeding for crop resistance but would also provide opportunities for the development of biotechnological tools for large-scale protein production in plant systems.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.