{"title":"Ploidy in cardiovascular development and regeneration","authors":"Tian Lan , Sabrina Kaminsky , Chi-Chung Wu","doi":"10.1016/j.semcdb.2025.103618","DOIUrl":"10.1016/j.semcdb.2025.103618","url":null,"abstract":"<div><div>Somatic polyploidy, a non-inheritable form of genome multiplication, plays cell-type specific and context-dependent roles in organ development and regeneration. In the mammalian heart, embryonic cardiomyocytes are primarily diploid, which lose their ability to complete cell division and become polyploid as they mature. Unlike lower vertebrates like zebrafish, polyploid cardiomyocytes are commonly found across mammals, including humans. Intriguingly, the degree, timing, and modes of cardiomyocyte polyploidization vary greatly between species. In addition to the association with cardiomyocyte development and maturation, recent studies have established polyploidy as a barrier against cardiomyocyte proliferation and heart regeneration following cardiac injury. Hence, a thorough understanding of how and why cardiomyocyte become polyploid will provide insights into heart development and may help develop therapeutic strategies for heart regeneration. Here, we review the dynamics of cardiomyocyte polyploidization across species and how cardiomyocyte-intrinsic, -extrinsic, and environmental factors regulate this process as well as the impact of cardiomyocyte polyploidization on heart development and regeneration.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"172 ","pages":"Article 103618"},"PeriodicalIF":6.2,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144099845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cardiac regeneration: Unraveling the complex network of intercellular crosstalk","authors":"Bailin Wu , Florian Constanty , Arica Beisaw","doi":"10.1016/j.semcdb.2025.103619","DOIUrl":"10.1016/j.semcdb.2025.103619","url":null,"abstract":"<div><div>The heart is composed of multiple cell types, including cardiomyocytes, endothelial/endocardial cells, fibroblasts, resident immune cells and epicardium and crosstalk between these cell types is crucial for proper cardiac function and homeostasis. In response to cardiac injury or disease, cell-cell interactions and intercellular crosstalk contribute to remodeling to compensate reduced heart function. In some vertebrates, the heart can regenerate following cardiac injury. While cardiomyocytes play a crucial role in this process, additional cell types are necessary to create a pro-regenerative microenvironment in the injured heart. Here, we review recent literature regarding the importance of cellular crosstalk in promoting cardiac regeneration and provide insight into emerging technologies to investigate cell-cell interactions <em>in vivo</em>. Lastly, we explore recent studies highlighting the importance of inter-organ communication in response to injury and promotion of cardiac regeneration. Importantly, understanding how intercellular and inter-organ crosstalk promote cardiac regeneration is essential for the development of therapeutic strategies to stimulate regeneration in the human heart.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"171 ","pages":"Article 103619"},"PeriodicalIF":6.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143936965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A near death experience: The secret stem cell life of caspase-3","authors":"Mahasen Sarji , Roi Ankawa , Matan Yampolsky , Yaron Fuchs","doi":"10.1016/j.semcdb.2025.103617","DOIUrl":"10.1016/j.semcdb.2025.103617","url":null,"abstract":"<div><div>Caspase-3 is known to play a pivotal role in mediating apoptosis, a key programmed cell death pathway. While extensive research has focused on understanding how caspase-3 is activated and functions during apoptosis, emerging evidence has revealed its significant non-apoptotic roles across various cell types, including stem cells. This review explores the critical involvement of caspase-3 in regulating stem cell properties, maintaining stem cell populations, and facilitating tissue regeneration. We also explore the potential pathological consequences of caspase-3 dysfunction in stem cells and cancer cells alongside the therapeutic opportunities of targeting caspase-3.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"171 ","pages":"Article 103617"},"PeriodicalIF":6.2,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143918260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swarnadip Ghosh , Bhavnesh Bishnoi , Soumyashree Das
{"title":"Artery regeneration: Molecules, mechanisms and impact on organ function","authors":"Swarnadip Ghosh , Bhavnesh Bishnoi , Soumyashree Das","doi":"10.1016/j.semcdb.2025.103611","DOIUrl":"10.1016/j.semcdb.2025.103611","url":null,"abstract":"<div><div>Replenishment of artery cells to repair or create new arteries is a promising strategy to re-vascularize ischemic tissue. However, limited understanding of cellular and molecular programs associated with artery (re-)growth impedes our efforts towards designing optimal therapeutic approaches. In this review, we summarize different cellular mechanisms that drive injury-induced artery regeneration in distinct organs and organisms. Artery formation during embryogenesis includes migration, self-amplification, and changes in cell fates. These processes are coordinated by multiple signaling pathways, like Vegf, Wnt, Notch, Cxcr4; many of which, also involved in injury-induced vascular responses. We also highlight how physiological and environmental factors determine the extent of arterial re-vascularization. Finally, we discuss different <em>in vitro</em> cellular reprogramming and tissue engineering approaches to promote artery regeneration, <em>in vivo</em>. This review provides the current understanding of endothelial cell fate reprogramming and explores avenues for regenerating arteries to restore organ function through efficient revascularization.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"171 ","pages":"Article 103611"},"PeriodicalIF":6.2,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy C. Byatt , Ehsan Razaghi , Selin Tüzüner , Filipa C. Simões
{"title":"Immune-mediated cardiac development and regeneration","authors":"Timothy C. Byatt , Ehsan Razaghi , Selin Tüzüner , Filipa C. Simões","doi":"10.1016/j.semcdb.2025.103613","DOIUrl":"10.1016/j.semcdb.2025.103613","url":null,"abstract":"<div><div>The complex interplay between the immune and cardiovascular systems during development, homeostasis and regeneration represents a rapidly evolving field in cardiac biology. Single cell technologies, spatial mapping and computational analysis have revolutionised our understanding of the diversity and functional specialisation of immune cells within the heart. From the earliest stages of cardiogenesis, where primitive macrophages guide heart tube formation, to the complex choreography of inflammation and its resolution during regeneration, immune cells emerge as central orchestrators of cardiac fate. Translating these fundamental insights into clinical applications represents a major challenge and opportunity for the field. In this Review, we decode the immunological blueprint of heart development and regeneration to transform cardiovascular disease treatment and unlock the regenerative capacity of the human heart.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"171 ","pages":"Article 103613"},"PeriodicalIF":6.2,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lewis Grozinger , Bruno Cuevas-Zuviría , Ángel Goñi-Moreno
{"title":"Why cellular computations challenge our design principles","authors":"Lewis Grozinger , Bruno Cuevas-Zuviría , Ángel Goñi-Moreno","doi":"10.1016/j.semcdb.2025.103616","DOIUrl":"10.1016/j.semcdb.2025.103616","url":null,"abstract":"<div><div>Biological systems inherently perform computations, inspiring synthetic biologists to engineer biological systems capable of executing predefined computational functions for diverse applications. Typically, this involves applying principles from the design of conventional silicon-based computers to create novel biological systems, such as genetic Boolean gates and circuits. However, the natural evolution of biological computation has not adhered to these principles, and this distinction warrants careful consideration. Here, we explore several concepts connecting computational theory, living cells, and computers, which may offer insights into the development of increasingly sophisticated biological computations. While conventional computers approach theoretical limits, solving nearly all problems that are computationally solvable, biological computers have the opportunity to outperform them in specific niches and problem domains. Crucially, biocomputation does not necessarily need to scale to rival or replicate the capabilities of electronic computation. Rather, efforts to re-engineer biology must recognise that life has evolved and optimised itself to solve specific problems using its own principles. Consequently, intelligently designed cellular computations will diverge from traditional computing in both implementation and application.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"171 ","pages":"Article 103616"},"PeriodicalIF":6.2,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew R. Laskary , James E. Hudson , Enzo R. Porrello
{"title":"Designing multicellular cardiac tissue engineering technologies for clinical translation","authors":"Andrew R. Laskary , James E. Hudson , Enzo R. Porrello","doi":"10.1016/j.semcdb.2025.103612","DOIUrl":"10.1016/j.semcdb.2025.103612","url":null,"abstract":"<div><div>Cardiovascular diseases remain the leading cause of death worldwide—claiming one-third of all deaths every year. Current two-dimensional <em>in vitro</em> cell culture systems and animal models cannot completely recapitulate the clinical complexity of these diseases in humans. Therefore, there is a dire need for higher fidelity biological systems capable of replicating these phenotypes to inform clinical outcomes and therapeutic development. Cardiac tissue engineering (CTE) strategies have emerged to fulfill this need by the design of <em>in vitro</em> three-dimensional myocardial tissue systems from human pluripotent stem cells. In this way, CTE systems serve as highly controllable human models for a variety of applications—including for physiological and pathological modeling, drug discovery and preclinical testing platforms, and even direct therapeutic interventions in the clinic. Although significant progress has been made in the development of these CTE technologies, critical challenges remain and necessary refinements are required to derive more advanced human heart tissue technologies. In this review, we distill three focus areas for the field to address: I) Generating cardiac muscle cell types and scalable manufacturing methods, II) Engineering tissue structure, function, and analyses, and III) Curating system design for specific application. In each of our focus areas, we emphasize the importance of designing CTE systems capable of mimicking the intricate intercellular connectivity of the human heart and discuss fundamental design considerations that subsequently arise. We conclude by highlighting cutting-edge applications that use CTE technologies for clinical modeling and the direct repair of damaged and diseased hearts.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"171 ","pages":"Article 103612"},"PeriodicalIF":6.2,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143886759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of granulosa cells in oocyte development and aging: Mechanisms and therapeutic opportunities","authors":"HaiYang Wang","doi":"10.1016/j.semcdb.2025.103614","DOIUrl":"10.1016/j.semcdb.2025.103614","url":null,"abstract":"<div><div>Granulosa cells (GCs) are essential for oocyte maturation, providing metabolic support, hormonal signaling, and structural integrity critical to successful follicular development. However, advancing age disrupts these functions, driven by factors such as increased oxidative stress, mitochondrial dysfunction, and transcriptomic and proteomic alterations. These age-related changes in GCs contribute to compromised oocyte quality, diminished follicular support, and a decline in fertility, particularly in women of advanced maternal age. This review highlights recent progress in understanding the pivotal roles of GCs in maintaining oocyte health, with a focus on the mechanisms underlying their aging-related dysfunction. Furthermore, we explore promising therapeutic strategies, including antioxidant therapies, metabolic modulators, and GC-based rejuvenation techniques, aimed at mitigating the impacts of reproductive aging. By consolidating and analyzing existing research, this review provides valuable perspectives on fertility preservation and factors shaping reproductive outcomes in women of advanced maternal age.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"171 ","pages":"Article 103614"},"PeriodicalIF":6.2,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143881867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gossiping about death: Apoptosis-induced ERK waves as coordinators of multicellular fate decisions","authors":"Paolo Armando Gagliardi , Olivier Pertz","doi":"10.1016/j.semcdb.2025.103615","DOIUrl":"10.1016/j.semcdb.2025.103615","url":null,"abstract":"<div><div>Apoptosis is now recognized as a highly dynamic process that involves the release of a large set of signaling molecules that convey information to cells neighboring an apoptotic site. Recent studies in epithelial systems have discovered that apoptotic cells trigger waves of pulses of mitogen-activated protein kinase (MAPK) / extracellular signal-regulated kinase (ERK) pathway activity in their neighbors. At the single-cell level, the ERK pulses emerge from the MAPK pathway's excitable network properties, such as ultrasensitivity and adaptation. At the cell population level, apoptosis-induced ERK waves (AiEWs) emerge from propagation of ERK pulses across cells via a mechanism that involves mechanical inputs and paracrine signaling. AiEWs enable cell populations to dynamically coordinate fate decision signaling during tissue homeostasis and development. This spatio-temporal signaling mechanism can be hijacked by cancer cells to induce drug-tolerant persister states when apoptosis is triggered by cytotoxic or targeted therapies, undermining treatment efficacy. In this review, we summarize our current understanding of AiEWs, including their initiation, propagation, and coordination of fate decision signaling within a population. We discuss how the relatively simple properties of single cells, and their interactions within a collective coordinate these dynamic signaling patterns. We highlight their implication in resistance to cancer therapy and explore potential strategies to target these waves to re-sensitize cancer cells. Finally, we discuss emerging technologies and future directions to expand the study of this biological phenomenon.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"171 ","pages":"Article 103615"},"PeriodicalIF":6.2,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging roles for microproteins as critical regulators of endoplasmic reticulum function and cellular homeostasis","authors":"Taylor M. Coughlin , Catherine A. Makarewich","doi":"10.1016/j.semcdb.2025.103608","DOIUrl":"10.1016/j.semcdb.2025.103608","url":null,"abstract":"<div><div>The endoplasmic reticulum (ER) is a multifunctional organelle essential for key cellular processes including protein synthesis, calcium homeostasis, and the cellular stress response. It is composed of distinct domains, such as the rough and smooth ER, as well as membrane regions that facilitate direct communication with other organelles, enabling its diverse functions. While many well-characterized ER proteins contribute to these processes, recent studies have revealed a previously underappreciated class of small proteins that play critical regulatory roles. Microproteins, typically under 100 amino acids in length, were historically overlooked due to size-based biases in genome annotation and often misannotated as noncoding RNAs. Advances in ribosome profiling, mass spectrometry, and computational approaches have now enabled the discovery of numerous previously unrecognized microproteins, significantly expanding our understanding of the proteome. While some ER-associated microproteins, such as phospholamban and sarcolipin, were identified decades ago, newly discovered microproteins share similar fundamental characteristics, underscoring the need to refine our understanding of the coding potential of the genome. Molecular studies have demonstrated that ER microproteins play essential roles in calcium regulation, ER stress response, organelle communication, and protein translocation. Moreover, growing evidence suggests that ER microproteins contribute to cellular homeostasis and are implicated in disease processes, including cardiovascular disease and cancer. This review examines the shared and unique functions of ER microproteins, their implications for health and disease, and their potential as therapeutic targets for conditions associated with ER dysfunction.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"170 ","pages":"Article 103608"},"PeriodicalIF":6.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143838893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}