{"title":"心脏再生:揭示细胞间串扰的复杂网络","authors":"Bailin Wu , Florian Constanty , Arica Beisaw","doi":"10.1016/j.semcdb.2025.103619","DOIUrl":null,"url":null,"abstract":"<div><div>The heart is composed of multiple cell types, including cardiomyocytes, endothelial/endocardial cells, fibroblasts, resident immune cells and epicardium and crosstalk between these cell types is crucial for proper cardiac function and homeostasis. In response to cardiac injury or disease, cell-cell interactions and intercellular crosstalk contribute to remodeling to compensate reduced heart function. In some vertebrates, the heart can regenerate following cardiac injury. While cardiomyocytes play a crucial role in this process, additional cell types are necessary to create a pro-regenerative microenvironment in the injured heart. Here, we review recent literature regarding the importance of cellular crosstalk in promoting cardiac regeneration and provide insight into emerging technologies to investigate cell-cell interactions <em>in vivo</em>. Lastly, we explore recent studies highlighting the importance of inter-organ communication in response to injury and promotion of cardiac regeneration. Importantly, understanding how intercellular and inter-organ crosstalk promote cardiac regeneration is essential for the development of therapeutic strategies to stimulate regeneration in the human heart.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"171 ","pages":"Article 103619"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiac regeneration: Unraveling the complex network of intercellular crosstalk\",\"authors\":\"Bailin Wu , Florian Constanty , Arica Beisaw\",\"doi\":\"10.1016/j.semcdb.2025.103619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The heart is composed of multiple cell types, including cardiomyocytes, endothelial/endocardial cells, fibroblasts, resident immune cells and epicardium and crosstalk between these cell types is crucial for proper cardiac function and homeostasis. In response to cardiac injury or disease, cell-cell interactions and intercellular crosstalk contribute to remodeling to compensate reduced heart function. In some vertebrates, the heart can regenerate following cardiac injury. While cardiomyocytes play a crucial role in this process, additional cell types are necessary to create a pro-regenerative microenvironment in the injured heart. Here, we review recent literature regarding the importance of cellular crosstalk in promoting cardiac regeneration and provide insight into emerging technologies to investigate cell-cell interactions <em>in vivo</em>. Lastly, we explore recent studies highlighting the importance of inter-organ communication in response to injury and promotion of cardiac regeneration. Importantly, understanding how intercellular and inter-organ crosstalk promote cardiac regeneration is essential for the development of therapeutic strategies to stimulate regeneration in the human heart.</div></div>\",\"PeriodicalId\":21735,\"journal\":{\"name\":\"Seminars in cell & developmental biology\",\"volume\":\"171 \",\"pages\":\"Article 103619\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cell & developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084952125000291\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952125000291","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Cardiac regeneration: Unraveling the complex network of intercellular crosstalk
The heart is composed of multiple cell types, including cardiomyocytes, endothelial/endocardial cells, fibroblasts, resident immune cells and epicardium and crosstalk between these cell types is crucial for proper cardiac function and homeostasis. In response to cardiac injury or disease, cell-cell interactions and intercellular crosstalk contribute to remodeling to compensate reduced heart function. In some vertebrates, the heart can regenerate following cardiac injury. While cardiomyocytes play a crucial role in this process, additional cell types are necessary to create a pro-regenerative microenvironment in the injured heart. Here, we review recent literature regarding the importance of cellular crosstalk in promoting cardiac regeneration and provide insight into emerging technologies to investigate cell-cell interactions in vivo. Lastly, we explore recent studies highlighting the importance of inter-organ communication in response to injury and promotion of cardiac regeneration. Importantly, understanding how intercellular and inter-organ crosstalk promote cardiac regeneration is essential for the development of therapeutic strategies to stimulate regeneration in the human heart.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.