Seminars in cell & developmental biology最新文献

筛选
英文 中文
The Calvin Benson Bassham cycle 卡尔文·本森·巴萨姆周期。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-09-14 DOI: 10.1016/j.semcdb.2023.09.002
Christine A. Raines, Amanda P. Cavanagh
{"title":"The Calvin Benson Bassham cycle","authors":"Christine A. Raines, Amanda P. Cavanagh","doi":"10.1016/j.semcdb.2023.09.002","DOIUrl":"10.1016/j.semcdb.2023.09.002","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"155 ","pages":"Pages 1-2"},"PeriodicalIF":7.3,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10618832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into the role of thrombospondin-1 in glioblastoma development 血小板反应蛋白-1在胶质母细胞瘤发展中的作用的新见解。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-09-09 DOI: 10.1016/j.semcdb.2023.09.001
Andreas Bikfalvi , Joris Guyon , Thomas Daubon
{"title":"New insights into the role of thrombospondin-1 in glioblastoma development","authors":"Andreas Bikfalvi ,&nbsp;Joris Guyon ,&nbsp;Thomas Daubon","doi":"10.1016/j.semcdb.2023.09.001","DOIUrl":"10.1016/j.semcdb.2023.09.001","url":null,"abstract":"<div><p>Glioblastoma (GB), the most malignant subtype of diffuse glioma, is highly aggressive, invasive and vascularized. Its median survival is still short even with maximum standard care. There is a need to identify potential new molecules and mechanisms, that are involved in the interactions of GB cells with the tumor microenvironment (TME), for therapeutic intervention<strong>.</strong> Thrombospondin-1 (TSP1) is a multi-faceted matricellular protein which plays a significant role in development, physiology and pathology including cancer. Recent studies have pinpoint an important role of TSP1 in GB development which will be summarized and discussed herein. We will discuss studies, mainly from preclinical research, which should lead to a deeper understanding of TSP1’s role in GB development. We will also discuss some issues with regard to the use of this knowledge for the clinic.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"155 ","pages":"Pages 52-57"},"PeriodicalIF":7.3,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10201720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Epigenetic regulation of inflammation 炎症的表观遗传学调控。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-09-07 DOI: 10.1016/j.semcdb.2023.08.004
Aamir Ahmad
{"title":"Epigenetic regulation of inflammation","authors":"Aamir Ahmad","doi":"10.1016/j.semcdb.2023.08.004","DOIUrl":"10.1016/j.semcdb.2023.08.004","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"154 ","pages":"Pages 165-166"},"PeriodicalIF":7.3,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10192035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A journey through translational control 通过平移控制的旅程。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-09-01 DOI: 10.1016/j.semcdb.2023.08.003
Huili Guo
{"title":"A journey through translational control","authors":"Huili Guo","doi":"10.1016/j.semcdb.2023.08.003","DOIUrl":"10.1016/j.semcdb.2023.08.003","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"154 ","pages":"Pages 85-87"},"PeriodicalIF":7.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10202090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma membrane repair empowers the necrotic survivors as innate immune modulators 质膜修复使坏死幸存者成为先天免疫调节剂
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-08-28 DOI: 10.1016/j.semcdb.2023.08.001
Shiqi Xu , Tyler J. Yang , Suhong Xu , Yi-Nan Gong
{"title":"Plasma membrane repair empowers the necrotic survivors as innate immune modulators","authors":"Shiqi Xu ,&nbsp;Tyler J. Yang ,&nbsp;Suhong Xu ,&nbsp;Yi-Nan Gong","doi":"10.1016/j.semcdb.2023.08.001","DOIUrl":"10.1016/j.semcdb.2023.08.001","url":null,"abstract":"<div><p><span>The plasma membrane is crucial to the survival of animal cells, and damage to it can be lethal, often resulting in necrosis. However, cells possess multiple mechanisms for repairing the membrane, which allows them to maintain their integrity to some extent, and sometimes even survive. Interestingly, cells that survive a near-necrosis experience can recognize sub-lethal membrane damage and use it as a signal to secrete chemokines and cytokines, which activate the immune response. This review will present evidence of necrotic cell survival in both in vitro and in vivo systems, including in </span><em>C. elegans</em>, mouse models, and humans. We will also summarize the various membrane repair mechanisms cells use to maintain membrane integrity. Finally, we will propose a mathematical model to illustrate how near-death experiences can transform dying cells into innate immune modulators for their microenvironment. By utilizing their membrane repair activity, the biological effects of cell death can extend beyond the mere elimination of the cells.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 93-106"},"PeriodicalIF":7.3,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10112537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Selective induction of programmed cell death using synthetic biology tools 利用合成生物学工具选择性诱导程序性细胞死亡
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-08-17 DOI: 10.1016/j.semcdb.2023.07.012
Kateryna Shkarina , Petr Broz
{"title":"Selective induction of programmed cell death using synthetic biology tools","authors":"Kateryna Shkarina ,&nbsp;Petr Broz","doi":"10.1016/j.semcdb.2023.07.012","DOIUrl":"10.1016/j.semcdb.2023.07.012","url":null,"abstract":"<div><p>Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of ‘classical’ cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 74-92"},"PeriodicalIF":7.3,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952123001507/pdfft?md5=e3301e41e4693bd0e37e41f30005f7df&pid=1-s2.0-S1084952123001507-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10025090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
C. elegans as a model for health and disease 秀丽隐杆线虫作为健康和疾病的典范。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-08-09 DOI: 10.1016/j.semcdb.2023.07.006
Steven Zuryn
{"title":"C. elegans as a model for health and disease","authors":"Steven Zuryn","doi":"10.1016/j.semcdb.2023.07.006","DOIUrl":"10.1016/j.semcdb.2023.07.006","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"154 ","pages":"Pages 1-3"},"PeriodicalIF":7.3,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9970722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vagal sensory pathway for the gut-brain communication 迷走神经感觉通路的肠脑通讯
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-08-08 DOI: 10.1016/j.semcdb.2023.07.009
Yiyun Cao , Rui Li , Ling Bai
{"title":"Vagal sensory pathway for the gut-brain communication","authors":"Yiyun Cao ,&nbsp;Rui Li ,&nbsp;Ling Bai","doi":"10.1016/j.semcdb.2023.07.009","DOIUrl":"10.1016/j.semcdb.2023.07.009","url":null,"abstract":"<div><p><span>The communication between the gut and brain is crucial for regulating various essential physiological functions, such as energy balance, fluid homeostasis, immune response, and emotion. The vagal sensory pathway plays an indispensable role in connecting the gut to the brain. Recently, our knowledge of the vagal gut-brain axis has significantly advanced through </span>molecular genetic<span><span><span> studies, revealing a diverse range of vagal sensory cell types with distinct peripheral innervations, response profiles, and physiological functions. Here, we review the current understanding of how vagal </span>sensory neurons<span> contribute to gut-brain communication. First, we highlight recent transcriptomic and </span></span>genetic approaches that have characterized different vagal sensory cell types. Then, we focus on discussing how different subtypes encode numerous gut-derived signals and how their activities are translated into physiological and behavioral regulations. The emerging insights into the diverse cell types and functional properties of vagal sensory neurons have paved the way for exciting future directions, which may provide valuable insights into potential therapeutic targets for disorders involving gut-brain communication.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 228-243"},"PeriodicalIF":7.3,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9966408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Calvin-Benson-Bassham cycle in C4 and Crassulacean acid metabolism species C4和天冬酸代谢物种的Calvin-Benson-Bassham循环
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-08-04 DOI: 10.1016/j.semcdb.2023.07.013
Martha Ludwig , James Hartwell , Christine A. Raines , Andrew J. Simkin
{"title":"The Calvin-Benson-Bassham cycle in C4 and Crassulacean acid metabolism species","authors":"Martha Ludwig ,&nbsp;James Hartwell ,&nbsp;Christine A. Raines ,&nbsp;Andrew J. Simkin","doi":"10.1016/j.semcdb.2023.07.013","DOIUrl":"https://doi.org/10.1016/j.semcdb.2023.07.013","url":null,"abstract":"<div><p>The Calvin-Benson-Bassham (CBB) cycle is the ancestral CO<sub>2</sub> assimilation pathway and is found in all photosynthetic organisms. Biochemical extensions to the CBB cycle have evolved that allow the resulting pathways to act as CO<sub>2</sub> concentrating mechanisms, either spatially in the case of C<sub>4</sub> photosynthesis or temporally in the case of Crassulacean acid metabolism (CAM). While the biochemical steps in the C<sub>4</sub> and CAM pathways are known, questions remain on their integration and regulation with CBB cycle activity. The application of omic and transgenic technologies is providing a more complete understanding of the biochemistry of C<sub>4</sub> and CAM species and will also provide insight into the CBB cycle in these plants. As the global population increases, new solutions are required to increase crop yields and meet demands for food and other bioproducts. Previous work in C<sub>3</sub> species has shown that increasing carbon assimilation through genetic manipulation of the CBB cycle can increase biomass and yield. There may also be options to improve photosynthesis in species using C<sub>4</sub> photosynthesis and CAM through manipulation of the CBB cycle in these plants. This is an underexplored strategy and requires more basic knowledge of CBB cycle operation in these species to enable approaches for increased productivity.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"155 ","pages":"Pages 10-22"},"PeriodicalIF":7.3,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71757398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neural crest cells as a source of microevolutionary variation 神经嵴细胞作为微进化变异的来源
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-08-01 DOI: 10.1016/j.semcdb.2022.06.001
A. Allyson Brandon, Daniela Almeida, Kara E. Powder
{"title":"Neural crest cells as a source of microevolutionary variation","authors":"A. Allyson Brandon,&nbsp;Daniela Almeida,&nbsp;Kara E. Powder","doi":"10.1016/j.semcdb.2022.06.001","DOIUrl":"10.1016/j.semcdb.2022.06.001","url":null,"abstract":"<div><p>Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This “fourth germ layer” is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"145 ","pages":"Pages 42-51"},"PeriodicalIF":7.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/73/b8/nihms-1912658.PMC10482117.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10231271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信