Seminars in cell & developmental biology最新文献

筛选
英文 中文
WHO elements – A new category of selfish genetic elements at the borderline between homing elements and transposable elements 世卫组织元件--介于同源元件和转座元件之间的一类新的自私遗传元件。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-04-25 DOI: 10.1016/j.semcdb.2024.04.001
Matthieu Osborne, Athaliah Fubara, Eoin Ó Cinnéide, Aisling Y. Coughlan, Kenneth H. Wolfe
{"title":"WHO elements – A new category of selfish genetic elements at the borderline between homing elements and transposable elements","authors":"Matthieu Osborne,&nbsp;Athaliah Fubara,&nbsp;Eoin Ó Cinnéide,&nbsp;Aisling Y. Coughlan,&nbsp;Kenneth H. Wolfe","doi":"10.1016/j.semcdb.2024.04.001","DOIUrl":"10.1016/j.semcdb.2024.04.001","url":null,"abstract":"<div><p>Homing genetic elements are a form of selfish DNA that inserts into a specific target site in the genome and spreads through the population by a process of biased inheritance. Two well-known types of homing element, called inteins and homing introns, were discovered decades ago. In this review we describe WHO elements, a newly discovered type of homing element that constitutes a distinct third category but is rare, having been found only in a few yeast species so far. WHO elements are inferred to spread using the same molecular homing mechanism as inteins and introns: they encode a site-specific endonuclease that cleaves the genome at the target site, making a DNA break that is subsequently repaired by copying the element. For most WHO elements, the target site is in the glycolytic gene <em>FBA1</em>. WHO elements differ from inteins and homing introns in two fundamental ways: they do not interrupt their host gene (<em>FBA1</em>), and they occur in clusters. The clusters were formed by successive integrations of different WHO elements into the <em>FBA1</em> locus, the result of an ‘arms race’ between the endonuclease and its target site. We also describe one family of WHO elements (WHO10) that is no longer specifically associated with the <em>FBA1</em> locus and instead appears to have become transposable, inserting at random genomic sites in <em>Torulaspora globosa</em> with up to 26 copies per strain. The WHO family of elements is therefore at the borderline between homing genetic elements and transposable elements.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"163 ","pages":"Pages 2-13"},"PeriodicalIF":7.3,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000326/pdfft?md5=ca5197c79a4967a06b53c679ce8a49e9&pid=1-s2.0-S1084952124000326-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140774912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out with the old, in with the new: Meiotic driving of sex chromosome evolution 旧的不去,新的不来:性染色体进化的减数分裂驱动力。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-04-24 DOI: 10.1016/j.semcdb.2024.04.004
Callie M. Swanepoel, Jacob L. Mueller
{"title":"Out with the old, in with the new: Meiotic driving of sex chromosome evolution","authors":"Callie M. Swanepoel,&nbsp;Jacob L. Mueller","doi":"10.1016/j.semcdb.2024.04.004","DOIUrl":"10.1016/j.semcdb.2024.04.004","url":null,"abstract":"<div><p>Chromosomal regions with meiotic drivers exhibit biased transmission (&gt; 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"163 ","pages":"Pages 14-21"},"PeriodicalIF":7.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140759524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover image of cell death and resilience in health and disease 健康和疾病中的细胞死亡与恢复能力的封面图片
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-04-17 DOI: 10.1016/j.semcdb.2024.04.003
Hadley Hanson , Jane Feng
{"title":"Cover image of cell death and resilience in health and disease","authors":"Hadley Hanson ,&nbsp;Jane Feng","doi":"10.1016/j.semcdb.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.04.003","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"163 ","pages":"Page 1"},"PeriodicalIF":7.3,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S108495212400034X/pdfft?md5=7421370082880d496827b62ff687887a&pid=1-s2.0-S108495212400034X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial control of lymphocyte homeostasis 线粒体对淋巴细胞平衡的控制
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-04-11 DOI: 10.1016/j.semcdb.2024.03.002
Yavuz F. Yazicioglu , Robert J. Mitchell , Alexander J. Clarke
{"title":"Mitochondrial control of lymphocyte homeostasis","authors":"Yavuz F. Yazicioglu ,&nbsp;Robert J. Mitchell ,&nbsp;Alexander J. Clarke","doi":"10.1016/j.semcdb.2024.03.002","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.03.002","url":null,"abstract":"<div><p>Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"161 ","pages":"Pages 42-53"},"PeriodicalIF":7.3,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000314/pdfft?md5=60e9f6a11ceaf2027bd611227bfb6eb1&pid=1-s2.0-S1084952124000314-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140545736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic conflicts in budding yeast: The 2μ plasmid as a model selfish element 芽殖酵母中的遗传冲突:2μ质粒是自私元素的典范
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-04-10 DOI: 10.1016/j.semcdb.2024.04.002
Michelle Hays
{"title":"Genetic conflicts in budding yeast: The 2μ plasmid as a model selfish element","authors":"Michelle Hays","doi":"10.1016/j.semcdb.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.04.002","url":null,"abstract":"<div><p>Antagonistic coevolution, arising from genetic conflict, can drive rapid evolution and biological innovation. Conflict can arise both between organisms and within genomes. This review focuses on budding yeasts as a model system for exploring intra- and inter-genomic genetic conflict, highlighting in particular the 2-micron (2μ) plasmid as a model selfish element. The 2μ is found widely in laboratory strains and industrial isolates of <em>Saccharomyces cerevisiae</em> and has long been known to cause host fitness defects. Nevertheless, the plasmid is frequently ignored in the context of genetic, fitness, and evolution studies. Here, I make a case for further exploring the evolutionary impact of the 2μ plasmid as well as other selfish elements of budding yeasts, discuss recent advances, and, finally, future directions for the field.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"161 ","pages":"Pages 31-41"},"PeriodicalIF":7.3,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symbiotic symphony: Understanding host-microbiota dialogues in a spatial context 共生交响乐:从空间角度理解宿主与微生物群的对话
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-04-01 DOI: 10.1016/j.semcdb.2024.03.001
Soumi Chatterjee , Steven T. Leach , Kei Lui , Archita Mishra
{"title":"Symbiotic symphony: Understanding host-microbiota dialogues in a spatial context","authors":"Soumi Chatterjee ,&nbsp;Steven T. Leach ,&nbsp;Kei Lui ,&nbsp;Archita Mishra","doi":"10.1016/j.semcdb.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.03.001","url":null,"abstract":"<div><p>Modern precision sequencing techniques have established humans as a holobiont that live in symbiosis with the microbiome. Microbes play an active role throughout the life of a human ranging from metabolism and immunity to disease tolerance. Hence, it is of utmost significance to study the eukaryotic host in conjunction with the microbial antigens to obtain a complete picture of the host-microbiome crosstalk. Previous attempts at profiling host-microbiome interactions have been either superficial or been attempted to catalogue eukaryotic transcriptomic profile and microbial communities in isolation. Additionally, the nature of such immune-microbial interactions is not random but spatially organised. Hence, for a holistic clinical understanding of the interplay between hosts and microbiota, it's imperative to concurrently analyze both microbial and host genetic information, ensuring the preservation of their spatial integrity. Capturing these interactions as a snapshot in time at their site of action has the potential to transform our understanding of how microbes impact human health. In examining early-life microbial impacts, the limited presence of communities compels analysis within reduced biomass frameworks. However, with the advent of spatial transcriptomics we can address this challenge and expand our horizons of understanding these interactions in detail. In the long run, simultaneous spatial profiling of host-microbiome dialogues can have enormous clinical implications especially in gaining mechanistic insights into the disease prognosis of localised infections and inflammation. This review addresses the lacunae in host-microbiome research and highlights the importance of profiling them together to map their interactions while preserving their spatial context.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"161 ","pages":"Pages 22-30"},"PeriodicalIF":7.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial dynamics: Regulating cell metabolism, homoeostasis, health and disease 线粒体动力学:调节细胞代谢、平衡、健康和疾病
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-03-19 DOI: 10.1016/j.semcdb.2024.02.002
Karoline D. Raven , Ronan Kapetanovic
{"title":"Mitochondrial dynamics: Regulating cell metabolism, homoeostasis, health and disease","authors":"Karoline D. Raven ,&nbsp;Ronan Kapetanovic","doi":"10.1016/j.semcdb.2024.02.002","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.02.002","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"161 ","pages":"Pages 20-21"},"PeriodicalIF":7.3,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140163042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology 线粒体动力学与自噬之间的相互作用:从关键的平衡机制到病理学的驱动因素
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-03-01 DOI: 10.1016/j.semcdb.2024.02.001
Alice Lacombe , Luca Scorrano
{"title":"The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology","authors":"Alice Lacombe ,&nbsp;Luca Scorrano","doi":"10.1016/j.semcdb.2024.02.001","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.02.001","url":null,"abstract":"<div><p>The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"161 ","pages":"Pages 1-19"},"PeriodicalIF":7.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000223/pdfft?md5=40242cc4361ea0b7c371f277046e0a49&pid=1-s2.0-S1084952124000223-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PSRs: Selfish chromosomes that manipulate reproductive development PSRs:操纵生殖发育的自私染色体
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-02-22 DOI: 10.1016/j.semcdb.2024.01.008
Xinmi Zhang, Patrick M. Ferree
{"title":"PSRs: Selfish chromosomes that manipulate reproductive development","authors":"Xinmi Zhang,&nbsp;Patrick M. Ferree","doi":"10.1016/j.semcdb.2024.01.008","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.01.008","url":null,"abstract":"<div><p>B chromosomes are intriguing “selfish” genetic elements, many of which exhibit higher-than-Mendelian transmission. This perspective highlights a group of B chromosomes known as Paternal Sex Ratio chromosomes (PSRs), which are found in several insects with haplo-diploid reproduction. PSRs harshly alter the organism’s reproduction to facilitate their own inheritance. A manifestation of this effect is the conversion of female destined individuals into males. Key to this conversion is the mysterious ability of PSRs to cause elimination of the sperm-inherited half of the genome during zygote formation. Here we discuss how PSRs were discovered, what is known about how they alter paternal chromatin dynamics to cause sex conversion, and how PSR-induced genome elimination is different from other forms of programmed genome elimination in different insects. PSRs also stand out because their DNA sequence compositions differ in remarkable ways from their insect’s essential chromosomes, a characteristic suggestive of interspecies origins. Broadly, we also highlight poorly understood aspects of PSR dynamics that need to be investigated.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 66-73"},"PeriodicalIF":7.3,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maintenance of satellite DNA stability 保持卫星 DNA 的稳定性
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-02-15 DOI: 10.1016/j.semcdb.2024.01.009
Simona Giunta
{"title":"Maintenance of satellite DNA stability","authors":"Simona Giunta","doi":"10.1016/j.semcdb.2024.01.009","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.01.009","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 64-65"},"PeriodicalIF":7.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139738921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信