Seminars in cell & developmental biology最新文献

筛选
英文 中文
Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. 超分辨率显微镜,破译线粒体结构和动态的技术突破。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-02-03 DOI: 10.1016/j.semcdb.2024.01.006
Pauline Teixeira , Rémi Galland , Arnaud Chevrollier
{"title":"Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic.","authors":"Pauline Teixeira ,&nbsp;Rémi Galland ,&nbsp;Arnaud Chevrollier","doi":"10.1016/j.semcdb.2024.01.006","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.01.006","url":null,"abstract":"<div><p>Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria’s structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 38-51"},"PeriodicalIF":7.3,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000181/pdfft?md5=abc72f81d96fafeb1e41e1121f53aec7&pid=1-s2.0-S1084952124000181-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139674746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sexual conflict drive in the rapid evolution of new gametogenesis genes 新配子发生基因快速进化过程中的性冲突驱动力
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-02-02 DOI: 10.1016/j.semcdb.2024.01.005
Nicholas W. VanKuren, Jianhai Chen, Manyuan Long
{"title":"Sexual conflict drive in the rapid evolution of new gametogenesis genes","authors":"Nicholas W. VanKuren,&nbsp;Jianhai Chen,&nbsp;Manyuan Long","doi":"10.1016/j.semcdb.2024.01.005","DOIUrl":"10.1016/j.semcdb.2024.01.005","url":null,"abstract":"<div><p><span>The evolutionary forces underlying the rapid evolution in sequences and functions of new genes remain a mystery. Adaptation by natural selection explains the evolution of some new genes. However, many new genes perform sex-biased functions that have rapidly evolved over short evolutionary time scales, suggesting that new gene evolution may often be driven by conflicting selective pressures on males and females. It is well established that such sexual conflict (SC) plays a central role in maintaining phenotypic and genetic variation within populations, but the role of SC in driving new gene evolution remains essentially unknown. This review explores the connections between SC and new gene evolution through discussions of the concept of SC, the phenotypic and genetic signatures of SC in evolving populations, and the molecular mechanisms by which SC could drive the evolution of new genes. We synthesize recent work in this area with a discussion of the case of </span><em>Apollo</em> and <em>Artemis</em>, two extremely young genes (&lt;200,000 years) in <span><em>Drosophila melanogaster</em></span><span><span>, which offered the first empirical insights into the evolutionary process by which SC could drive the evolution of new genes. These new duplicate genes exhibit the hallmarks of sexually antagonistic selection: rapid DNA and </span>protein sequence<span> evolution, essential sex-specific functions in gametogenesis, and complementary sex-biased expression patterns. Importantly, </span></span><em>Apollo</em> is essential for male fitness but detrimental to female fitness, while <em>Artemis</em> is essential for female fitness but detrimental to male fitness. These sexually antagonistic fitness effects and complementary changes to expression, sequence, and function suggest that these duplicates were selected for mitigating SC, but that SC has not been fully resolved. Finally, we propose Sexual Conflict Drive as a self-driven model to interpret the rapid evolution of new genes, explain the potential for SC and sexually antagonistic selection to contribute to long-term evolution, and suggest its utility for understanding the rapid evolution of new genes in gametogenesis.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 27-37"},"PeriodicalIF":7.3,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139665411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress granule and P-body clearance: Seeking coherence in acts of disappearance 应激颗粒和P体清除:在消失行为中寻求一致性
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-01-25 DOI: 10.1016/j.semcdb.2024.01.002
J. Ross Buchan
{"title":"Stress granule and P-body clearance: Seeking coherence in acts of disappearance","authors":"J. Ross Buchan","doi":"10.1016/j.semcdb.2024.01.002","DOIUrl":"10.1016/j.semcdb.2024.01.002","url":null,"abstract":"<div><p><span>Stress granules<span> and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, </span></span>RNA<span> helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 10-26"},"PeriodicalIF":7.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
rDNA transcription, replication and stability in Saccharomyces cerevisiae 酿酒酵母中 rDNA 的转录、复制和稳定性
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-01-19 DOI: 10.1016/j.semcdb.2024.01.004
Anna D’Alfonso , Gioacchino Micheli , Giorgio Camilloni
{"title":"rDNA transcription, replication and stability in Saccharomyces cerevisiae","authors":"Anna D’Alfonso ,&nbsp;Gioacchino Micheli ,&nbsp;Giorgio Camilloni","doi":"10.1016/j.semcdb.2024.01.004","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.01.004","url":null,"abstract":"<div><p>The ribosomal DNA locus (rDNA) is central for the functioning of cells because it encodes ribosomal RNAs, key components of ribosomes, and also because of its links to fundamental metabolic processes, with significant impact on genome integrity and aging. The repetitive nature of the rDNA gene units forces the locus to maintain sequence homogeneity through recombination processes that are closely related to genomic stability. The co-presence of basic DNA transactions, such as replication, transcription by major RNA polymerases, and recombination, in a defined and restricted area of the genome is of particular relevance as it affects the stability of the rDNA locus by both direct and indirect mechanisms. This condition is well exemplified by the rDNA of <em>Saccharomyces cerevisiae</em>. In this review we summarize essential knowledge on how the complexity and overlap of different processes contribute to the control of rDNA and genomic stability in this model organism.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 1-9"},"PeriodicalIF":7.3,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000107/pdfft?md5=10a0dc2a8a2a11b2e20fad7a74e89e0f&pid=1-s2.0-S1084952124000107-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress granules and P-bodies – New ideas and experimental models worth exploring 应力颗粒和 P-体--值得探索的新观点和实验模型
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2024-01-16 DOI: 10.1016/j.semcdb.2024.01.003
J. Ross Buchan
{"title":"Stress granules and P-bodies – New ideas and experimental models worth exploring","authors":"J. Ross Buchan","doi":"10.1016/j.semcdb.2024.01.003","DOIUrl":"10.1016/j.semcdb.2024.01.003","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"158 ","pages":"Pages 1-2"},"PeriodicalIF":7.3,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomere-specific regulation of TERRA and its impact on telomere stability 端粒特异性调控 TERRA 及其对端粒稳定性的影响
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-12-11 DOI: 10.1016/j.semcdb.2023.11.001
Julieta Rivosecchi , Katarina Jurikova , Emilio Cusanelli
{"title":"Telomere-specific regulation of TERRA and its impact on telomere stability","authors":"Julieta Rivosecchi ,&nbsp;Katarina Jurikova ,&nbsp;Emilio Cusanelli","doi":"10.1016/j.semcdb.2023.11.001","DOIUrl":"10.1016/j.semcdb.2023.11.001","url":null,"abstract":"<div><p>TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3′ end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"157 ","pages":"Pages 3-23"},"PeriodicalIF":7.3,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952123002276/pdfft?md5=ab5cb2395f7633fd0c68eca559d8986f&pid=1-s2.0-S1084952123002276-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138568354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Special issue SCDB “Cell death and survival” 社论:特刊SCDB“细胞死亡和生存”:健康和疾病中的细胞死亡和恢复力。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-12-02 DOI: 10.1016/j.semcdb.2023.11.004
Maddalena Nano, Denise J. Montell
{"title":"Editorial: Special issue SCDB “Cell death and survival”","authors":"Maddalena Nano,&nbsp;Denise J. Montell","doi":"10.1016/j.semcdb.2023.11.004","DOIUrl":"10.1016/j.semcdb.2023.11.004","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"157 ","pages":"Pages 1-2"},"PeriodicalIF":7.3,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138478454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collective mitochondrial dynamics resolve conflicting cellular tensions: From plants to general principles 集体线粒体动力学解决矛盾的细胞紧张:从植物到一般原则
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-11-30 DOI: 10.1016/j.semcdb.2023.09.005
Joanna M. Chustecki , Iain G. Johnston
{"title":"Collective mitochondrial dynamics resolve conflicting cellular tensions: From plants to general principles","authors":"Joanna M. Chustecki ,&nbsp;Iain G. Johnston","doi":"10.1016/j.semcdb.2023.09.005","DOIUrl":"https://doi.org/10.1016/j.semcdb.2023.09.005","url":null,"abstract":"<div><p>Mitochondria play diverse and essential roles in eukaryotic cells, and plants are no exception. Plant mitochondria have several differences from their metazoan and fungal cousins: they often exist in a fragmented state, move rapidly on actin rather than microtubules, have many plant-specific metabolic features and roles, and usually contain only a subset of the complete mtDNA genome, which itself undergoes frequent recombination. This arrangement means that exchange and complementation is essential for plant mitochondria, and recent work has begun to reveal how their collective dynamics and resultant “social networks” of encounters support this exchange, connecting plant mitochondria in time rather than in space. This review will argue that this social network perspective can be extended to a “societal network”, where mitochondrial dynamics are an essential part of the interacting cellular society of organelles and biomolecules. Evidence is emerging that mitochondrial dynamics allow optimal resolutions to competing cellular priorities; we will survey this evidence and review potential future research directions, highlighting that plant mitochondria can help reveal and test principles that apply across other kingdoms of life. In parallel with this fundamental cell biology, we also highlight the translational “One Health” importance of plant mitochondrial behaviour – which is exploited in the production of a vast amount of crops consumed worldwide – and the potential for multi-objective optimisation to understand and rationally re-engineer the evolved resolutions to these tensions.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 253-265"},"PeriodicalIF":7.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952123001696/pdfft?md5=6b18ab25372e256cc29e0ca3feb4c2e9&pid=1-s2.0-S1084952123001696-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138466608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apoptotic signaling: Beyond cell death 凋亡信号:超越细胞死亡。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-11-19 DOI: 10.1016/j.semcdb.2023.11.002
Maddalena Nano , Denise J. Montell
{"title":"Apoptotic signaling: Beyond cell death","authors":"Maddalena Nano ,&nbsp;Denise J. Montell","doi":"10.1016/j.semcdb.2023.11.002","DOIUrl":"10.1016/j.semcdb.2023.11.002","url":null,"abstract":"<div><p>Apoptosis is the best described form of regulated cell death, and was, until relatively recently, considered irreversible once particular biochemical points-of-no-return were activated. In this manuscript, we examine the mechanisms cells use to escape from a self-amplifying death signaling module. We discuss the role of feedback, dynamics, propagation, and noise in apoptotic signaling. We conclude with a revised model for the role of apoptosis in animal development, homeostasis, and disease.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 22-34"},"PeriodicalIF":7.3,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138291743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Immunogenic cell stress and death in the treatment of cancer 癌症治疗中的免疫原性细胞应激和死亡。
IF 7.3 2区 生物学
Seminars in cell & developmental biology Pub Date : 2023-11-16 DOI: 10.1016/j.semcdb.2023.10.007
Hui Pan , Peng Liu , Liwei Zhao , Yuhong Pan , Misha Mao , Guido Kroemer , Oliver Kepp
{"title":"Immunogenic cell stress and death in the treatment of cancer","authors":"Hui Pan ,&nbsp;Peng Liu ,&nbsp;Liwei Zhao ,&nbsp;Yuhong Pan ,&nbsp;Misha Mao ,&nbsp;Guido Kroemer ,&nbsp;Oliver Kepp","doi":"10.1016/j.semcdb.2023.10.007","DOIUrl":"10.1016/j.semcdb.2023.10.007","url":null,"abstract":"<div><p><span>The successful treatment of oncological malignancies which results in long-term disease control or the complete eradication of cancerous cells necessitates the onset of adaptive immune responses targeting tumor-specific antigens. Such desirable anticancer immunity can be triggered via the induction of immunogenic cell death (ICD) of cancer cells, thus converting malignant cells into an in situ vaccine that elicits </span>T cell<span> mediated adaptive immune responses and establishes durable immunological memory<span>. The exploration of ICD for cancer treatment has been subject to extensive research. However, functional heterogeneity among ICD activating therapies in many cases requires specific co-medications to achieve full-blown efficacy. Here, we described the hallmarks of ICD and classify ICD activators into three distinct functional categories namely, according to their mode of action: (i) ICD inducers, which increase the immunogenicity of malignant cells, (ii) ICD sensitizers, which prime cellular circuitries for ICD induction by conventional cytotoxic agents, and (iii) ICD enhancers, which improve the perception of ICD signals by antigen presenting dendritic cells. Altogether, ICD induction, sensitization and enhancement offer the possibility to convert well-established conventional anticancer therapies into immunotherapeutic approaches that activate T cell-mediated anticancer immunity.</span></span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 11-21"},"PeriodicalIF":7.3,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136399101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信