{"title":"Is one lymphocyte's brake another lymphocyte's gas?","authors":"Thomas T Xu, Shiv Pillai","doi":"10.1126/sciimmunol.adw3656","DOIUrl":"https://doi.org/10.1126/sciimmunol.adw3656","url":null,"abstract":"<p><p>PD-1 contributes to memory B cell development and robust antibody responses through B cell extrinsic and intrinsic mechanisms.</p>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 104","pages":"eadw3656"},"PeriodicalIF":17.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143371035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Is one lymphocyte’s brake another lymphocyte’s gas?","authors":"Thomas T. Xu, Shiv Pillai","doi":"","DOIUrl":"","url":null,"abstract":"<div >PD-1 contributes to memory B cell development and robust antibody responses through B cell extrinsic and intrinsic mechanisms.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 104","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Yang, Ophélie Piedfort, Guillem Sanchez-Sanchez, Arnaud Lavergne, Meijiao Gong, Garrie Peng, Ariel Madrigal, Georgios Petrellis, Brunette Katsandegwaza, Lucia Rodriguez Rodriguez, Alexis Balthazar, Sarah J. Meyer, Gert Van Isterdael, Julie Van Duyse, Fabienne Andris, Qiang Bai, Thomas Marichal, Bénédicte Machiels, Lars Nitschke, Hamed S. Najafabadi, Irah L. King, David Vermijlen, Benjamin G. Dewals
{"title":"IL-4 induces CD22 expression to restrain the effector program of virtual memory T cells","authors":"Bin Yang, Ophélie Piedfort, Guillem Sanchez-Sanchez, Arnaud Lavergne, Meijiao Gong, Garrie Peng, Ariel Madrigal, Georgios Petrellis, Brunette Katsandegwaza, Lucia Rodriguez Rodriguez, Alexis Balthazar, Sarah J. Meyer, Gert Van Isterdael, Julie Van Duyse, Fabienne Andris, Qiang Bai, Thomas Marichal, Bénédicte Machiels, Lars Nitschke, Hamed S. Najafabadi, Irah L. King, David Vermijlen, Benjamin G. Dewals","doi":"10.1126/sciimmunol.adk4841","DOIUrl":"https://doi.org/10.1126/sciimmunol.adk4841","url":null,"abstract":"Parasitic helminths induce the production of interleukin-4 (IL-4), which causes the expansion of virtual memory CD8 <jats:sup>+</jats:sup> T cells (T <jats:sub>VM</jats:sub> cells), a cell subset that contributes to the control of coinfection with intracellular pathogens. However, the mechanisms regulating IL-4–dependent T <jats:sub>VM</jats:sub> cell activation and expansion remain ill defined. Here, we used single-cell RNA sequencing of CD8 <jats:sup>+</jats:sup> T cells to identify pathways that control IL-4–dependent T <jats:sub>VM</jats:sub> cell responses. Gene signature analysis of CD8 <jats:sup>+</jats:sup> T cells identified a cell cluster marked by CD22, a canonical regulator of B cell activation, as a selective surface marker of IL-4–induced T <jats:sub>VM</jats:sub> cells. CD22 <jats:sup>+</jats:sup> T <jats:sub>VM</jats:sub> cells were enriched for interferon-γ and granzyme A and retained a diverse TCR repertoire while enriched in self-reactive CDR3 sequences. CD22 intrinsically regulated the IL-4–induced CD8 <jats:sup>+</jats:sup> T cell effector program, resulting in reduced responsiveness of CD22 <jats:sup>+</jats:sup> T <jats:sub>VM</jats:sub> cells and regulatory functions to infection and inflammation. Thus, helminth-induced IL-4 drives the expansion and activation of T <jats:sub>VM</jats:sub> cells that is counterinhibited by CD22.","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"23 1","pages":""},"PeriodicalIF":24.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143258319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raphael Lutz, Alexandra M. Poos, Llorenç Solé-Boldo, Lukas John, Johanna Wagner, Nina Prokoph, Marc A. Baertsch, Dominik Vonficht, Subarna Palit, Alexander Brobeil, Gunhild Mechtersheimer, Nina Hildenbrand, Stefan Hemmer, Simon Steiger, Sabrina Horn, Wojciech Pepke, David M. Spranz, Christoph Rehnitz, Pooja Sant, Jan-Philipp Mallm, Mirco J. Friedrich, Philipp Reichert, Stefanie Huhn, Andreas Trumpp, Karsten Rippe, Laleh Haghverdi, Stefan Fröhling, Carsten Müller-Tidow, Daniel Hübschmann, Hartmut Goldschmidt, Gerald Willimsky, Sandra Sauer, Marc S. Raab, Simon Haas, Niels Weinhold
{"title":"Bone marrow breakout lesions act as key sites for tumor-immune cell diversification in multiple myeloma","authors":"Raphael Lutz, Alexandra M. Poos, Llorenç Solé-Boldo, Lukas John, Johanna Wagner, Nina Prokoph, Marc A. Baertsch, Dominik Vonficht, Subarna Palit, Alexander Brobeil, Gunhild Mechtersheimer, Nina Hildenbrand, Stefan Hemmer, Simon Steiger, Sabrina Horn, Wojciech Pepke, David M. Spranz, Christoph Rehnitz, Pooja Sant, Jan-Philipp Mallm, Mirco J. Friedrich, Philipp Reichert, Stefanie Huhn, Andreas Trumpp, Karsten Rippe, Laleh Haghverdi, Stefan Fröhling, Carsten Müller-Tidow, Daniel Hübschmann, Hartmut Goldschmidt, Gerald Willimsky, Sandra Sauer, Marc S. Raab, Simon Haas, Niels Weinhold","doi":"","DOIUrl":"","url":null,"abstract":"<div >The bone marrow microenvironment plays a crucial role in the development of multiple myeloma. As the disease progresses, malignant myeloma cells can evolve to survive outside the bone marrow. However, the processes underlying bone marrow independence and their consequences for immune control remain poorly understood. Here, we conducted single-cell and spatial multiomics analyses of bone marrow–confined intramedullary disease and paired breakout lesions that disrupt the cortical bone. These analyses revealed a distinct cellular microenvironment and architectural features of breakout lesions, characterized by extensive areas of malignant plasma cells interspersed with lesion-specific solitary natural killer and macrophage populations, as well as focal accumulations of immune cell agglomerates. Within these agglomerates, spatially confined T cell clones expanded alongside various immune cells, coinciding with the local genomic evolution of tumor cells. These analyses identify breakout lesions as a hotspot for tumor-immune cell interactions and diversification, representing a key event in myeloma pathogenesis.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 104","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.adp6667","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catarina Gago da Graça, Amania A. Sheikh, Dane M. Newman, Lifen Wen, Sining Li, Jian Shen, Yuqi Zhang, Sarah S. Gabriel, David Chisanga, Justine Seow, Annika Poch, Lisa Rausch, Minh-Hanh T. Nguyen, Jayendra Singh, Chun-Hsi Su, Leonie A. Cluse, Carlson Tsui, Thomas N. Burn, Simone L. Park, Bianca Von Scheidt, Laura K. Mackay, Ajithkumar Vasanthakumar, David Bending, Wei Shi, Weiguo Cui, Jan Schröder, Ricky W. Johnstone, Axel Kallies, Daniel T. Utzschneider
{"title":"Stem-like memory and precursors of exhausted T cells share a common progenitor defined by ID3 expression","authors":"Catarina Gago da Graça, Amania A. Sheikh, Dane M. Newman, Lifen Wen, Sining Li, Jian Shen, Yuqi Zhang, Sarah S. Gabriel, David Chisanga, Justine Seow, Annika Poch, Lisa Rausch, Minh-Hanh T. Nguyen, Jayendra Singh, Chun-Hsi Su, Leonie A. Cluse, Carlson Tsui, Thomas N. Burn, Simone L. Park, Bianca Von Scheidt, Laura K. Mackay, Ajithkumar Vasanthakumar, David Bending, Wei Shi, Weiguo Cui, Jan Schröder, Ricky W. Johnstone, Axel Kallies, Daniel T. Utzschneider","doi":"","DOIUrl":"","url":null,"abstract":"<div >Stem-like T cells are attractive immunotherapeutic targets in patients with cancer given their ability to proliferate and differentiate into effector progeny. Thus, identifying T cells with enhanced stemness and understanding their developmental requirements are of broad clinical and therapeutic interest. Here, we demonstrate that during acute infection, the transcriptional regulator inhibitor of DNA binding 3 (ID3) identifies stem-like T cells that are uniquely adapted to generate precursors of exhausted T (Tpex) cells in response to chronic infection or cancer. Expression of ID3 itself enables Tpex cells to sustain T cell responses in chronic infection or cancer, whereas loss of ID3 results in impaired maintenance of CD8 T cell immunity. Furthermore, we demonstrate that interleukin-1 (IL-1) family members, including IL-36β and IL-18, promote the generation of ID3<sup>+</sup> T cells that mediate superior tumor control. Overall, we identify ID3 as a common denominator of stem-like T cells in both acute and chronic infections that is specifically required to sustain T cell responses to chronic stimulation.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 103","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Barbera, Matthijs J A Schuiling, Nathaniel A Sanjaya, Ilkka Pietilä, Tina Sarén, Magnus Essand, Anna Dimberg
{"title":"Trogocytosis of chimeric antigen receptors between T cells is regulated by their transmembrane domains.","authors":"Stefano Barbera, Matthijs J A Schuiling, Nathaniel A Sanjaya, Ilkka Pietilä, Tina Sarén, Magnus Essand, Anna Dimberg","doi":"10.1126/sciimmunol.ado2054","DOIUrl":"https://doi.org/10.1126/sciimmunol.ado2054","url":null,"abstract":"<p><p>Trogocytosis is an exchange of membrane-associated molecules between cells that can either halt or boost immune responses. However, the mechanism that regulates trogocytosis in T cells and its consequences are not yet clear. Here, we demonstrate that T cells can exchange chimeric antigen receptors (CARs) by trogocytosis, thereby arming recipient T cells with the capacity to respond to tumor antigens by up-regulating proteins associated with a cytotoxic response and killing of target cells. We demonstrate that although trogocytosis is dependent on cell-cell contact, the exchange of a specific cell membrane protein does not require a cognate binding partner on the surface of recipient cells. Instead, the probability that a protein is exchanged by trogocytosis is determined by its transmembrane domain. This finding opens new avenues for modulating this process in CAR-T cells.</p>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 103","pages":"eado2054"},"PeriodicalIF":17.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Barbera, Matthijs J. A. Schuiling, Nathaniel A. Sanjaya, Ilkka Pietilä, Tina Sarén, Magnus Essand, Anna Dimberg
{"title":"Trogocytosis of chimeric antigen receptors between T cells is regulated by their transmembrane domains","authors":"Stefano Barbera, Matthijs J. A. Schuiling, Nathaniel A. Sanjaya, Ilkka Pietilä, Tina Sarén, Magnus Essand, Anna Dimberg","doi":"","DOIUrl":"","url":null,"abstract":"<div >Trogocytosis is an exchange of membrane-associated molecules between cells that can either halt or boost immune responses. However, the mechanism that regulates trogocytosis in T cells and its consequences are not yet clear. Here, we demonstrate that T cells can exchange chimeric antigen receptors (CARs) by trogocytosis, thereby arming recipient T cells with the capacity to respond to tumor antigens by up-regulating proteins associated with a cytotoxic response and killing of target cells. We demonstrate that although trogocytosis is dependent on cell-cell contact, the exchange of a specific cell membrane protein does not require a cognate binding partner on the surface of recipient cells. Instead, the probability that a protein is exchanged by trogocytosis is determined by its transmembrane domain. This finding opens new avenues for modulating this process in CAR-T cells.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 103","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.ado2054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catarina Gago da Graça, Amania A Sheikh, Dane M Newman, Lifen Wen, Sining Li, Jian Shen, Yuqi Zhang, Sarah S Gabriel, David Chisanga, Justine Seow, Annika Poch, Lisa Rausch, Minh-Hanh T Nguyen, Jayendra Singh, Chun-Hsi Su, Leonie A Cluse, Carlson Tsui, Thomas N Burn, Simone L Park, Bianca Von Scheidt, Laura K Mackay, Ajithkumar Vasanthakumar, David Bending, Wei Shi, Weiguo Cui, Jan Schröder, Ricky W Johnstone, Axel Kallies, Daniel T Utzschneider
{"title":"Stem-like memory and precursors of exhausted T cells share a common progenitor defined by ID3 expression.","authors":"Catarina Gago da Graça, Amania A Sheikh, Dane M Newman, Lifen Wen, Sining Li, Jian Shen, Yuqi Zhang, Sarah S Gabriel, David Chisanga, Justine Seow, Annika Poch, Lisa Rausch, Minh-Hanh T Nguyen, Jayendra Singh, Chun-Hsi Su, Leonie A Cluse, Carlson Tsui, Thomas N Burn, Simone L Park, Bianca Von Scheidt, Laura K Mackay, Ajithkumar Vasanthakumar, David Bending, Wei Shi, Weiguo Cui, Jan Schröder, Ricky W Johnstone, Axel Kallies, Daniel T Utzschneider","doi":"10.1126/sciimmunol.adn1945","DOIUrl":"10.1126/sciimmunol.adn1945","url":null,"abstract":"<p><p>Stem-like T cells are attractive immunotherapeutic targets in patients with cancer given their ability to proliferate and differentiate into effector progeny. Thus, identifying T cells with enhanced stemness and understanding their developmental requirements are of broad clinical and therapeutic interest. Here, we demonstrate that during acute infection, the transcriptional regulator inhibitor of DNA binding 3 (ID3) identifies stem-like T cells that are uniquely adapted to generate precursors of exhausted T (Tpex) cells in response to chronic infection or cancer. Expression of ID3 itself enables Tpex cells to sustain T cell responses in chronic infection or cancer, whereas loss of ID3 results in impaired maintenance of CD8 T cell immunity. Furthermore, we demonstrate that interleukin-1 (IL-1) family members, including IL-36β and IL-18, promote the generation of ID3<sup>+</sup> T cells that mediate superior tumor control. Overall, we identify ID3 as a common denominator of stem-like T cells in both acute and chronic infections that is specifically required to sustain T cell responses to chronic stimulation.</p>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 103","pages":"eadn1945"},"PeriodicalIF":17.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel Marin-Rodero, Elisa Cintado, Alec J Walker, Teshika Jayewickreme, Felipe A Pinho-Ribeiro, Quentin Richardson, Ruaidhrí Jackson, Isaac M Chiu, Christophe Benoist, Beth Stevens, José Luís Trejo, Diane Mathis
{"title":"The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis.","authors":"Miguel Marin-Rodero, Elisa Cintado, Alec J Walker, Teshika Jayewickreme, Felipe A Pinho-Ribeiro, Quentin Richardson, Ruaidhrí Jackson, Isaac M Chiu, Christophe Benoist, Beth Stevens, José Luís Trejo, Diane Mathis","doi":"10.1126/sciimmunol.adu2910","DOIUrl":"10.1126/sciimmunol.adu2910","url":null,"abstract":"<p><p>Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T<sub>reg</sub>) compartment in the meninges. A T<sub>reg</sub> subtype specialized in controlling interferon-gamma (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual T<sub>reg</sub> ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal T<sub>regs</sub> are a multifaceted safeguard of brain homeostasis at steady state.</p>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":" ","pages":"eadu2910"},"PeriodicalIF":17.6,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katie Maurer, Cameron Y. Park, Shouvik Mani, Mehdi Borji, Florian Raths, Kenneth H. Gouin III, Livius Penter, Yinuo Jin, Jia Yi Zhang, Crystal Shin, James R. Brenner, Jackson Southard, Sachi Krishna, Wesley Lu, Haoxiang Lyu, Domenic Abbondanza, Chanell Mangum, Lars Rønn Olsen, Michael J. Lawson, Martin Fabani, Donna S. Neuberg, Pavan Bachireddy, Eli N. Glezer, Samouil L. Farhi, Shuqiang Li, Kenneth J. Livak, Jerome Ritz, Robert J. Soiffer, Catherine J. Wu, Elham Azizi
{"title":"Coordinated immune networks in leukemia bone marrow microenvironments distinguish response to cellular therapy","authors":"Katie Maurer, Cameron Y. Park, Shouvik Mani, Mehdi Borji, Florian Raths, Kenneth H. Gouin III, Livius Penter, Yinuo Jin, Jia Yi Zhang, Crystal Shin, James R. Brenner, Jackson Southard, Sachi Krishna, Wesley Lu, Haoxiang Lyu, Domenic Abbondanza, Chanell Mangum, Lars Rønn Olsen, Michael J. Lawson, Martin Fabani, Donna S. Neuberg, Pavan Bachireddy, Eli N. Glezer, Samouil L. Farhi, Shuqiang Li, Kenneth J. Livak, Jerome Ritz, Robert J. Soiffer, Catherine J. Wu, Elham Azizi","doi":"10.1126/sciimmunol.adr0782","DOIUrl":"10.1126/sciimmunol.adr0782","url":null,"abstract":"<div >Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded <i>ZNF683</i><sup>+</sup> CD8<sup>+</sup> cytotoxic T lymphocytes with in vitro specificity for patient-matched AML. These cells originated primarily from the DLI product and appeared to coordinate antitumor immune responses through interaction with diverse immune cell types within the marrow microenvironment. Nonresponders lacked this cross-talk and had cytotoxic T lymphocytes with elevated <i>TIGIT</i> expression. Our study identifies recipient bone marrow microenvironment differences as a determinant of an effective antileukemia response and opens opportunities to modulate cellular therapy.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 103","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.adr0782","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}