Xin Zhao, Shengen Shawn Hu, Wen-Han Lee, Johannes L. Zakrzewski, Qing-Sheng Mi, Rachel K. Rosenstein, Chongzhi Zang, Xiaoke Ma, Hai-Hui Xue
{"title":"单细胞多组学鉴定Tcf1和Lef1是早期胸腺祖细胞命运的关键启动子。","authors":"Xin Zhao, Shengen Shawn Hu, Wen-Han Lee, Johannes L. Zakrzewski, Qing-Sheng Mi, Rachel K. Rosenstein, Chongzhi Zang, Xiaoke Ma, Hai-Hui Xue","doi":"10.1126/sciimmunol.adq8970","DOIUrl":null,"url":null,"abstract":"<div >Bone marrow–derived multipotent hematopoietic progenitors seed the thymus and generate early thymic progenitors (ETPs). However, the factors governing ETP formation remain poorly defined. Using single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), we dissected the heterogeneity of transcriptomic and chromatin accessibility landscapes in murine ETPs. Whereas Tcf1<sup>−</sup> ETPs exhibited higher proliferative capacity, Tcf1<sup>+</sup> ETPs appeared to be immediate, more robust precursors to T lineage–specified early thymocytes. Prethymic ablation of Tcf1 and its homolog Lef1 severely impaired ETP formation in vivo. Whereas ablating Tcf1 alone had limited impact, loss of both Tcf1 and Lef1 impaired transcriptional activation of <i>Notch1</i> and Notch pathway effector molecules, including <i>Hes1</i> and <i>Hhex</i>, accompanied by aberrantly induced B cell and myeloid gene programs. Acute deletion of both factors compromised Notch pathway, glycolysis, and T cell gene programs in emergent ETPs ex vivo. Thus, Tcf1 and Lef1 act upstream of the Notch pathway, functioning as prethymic initiators of ETP fate and intrathymic gatekeepers of ETP identity and T lineage potential.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 111","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell multiomics identifies Tcf1 and Lef1 as key initiators of early thymic progenitor fate\",\"authors\":\"Xin Zhao, Shengen Shawn Hu, Wen-Han Lee, Johannes L. Zakrzewski, Qing-Sheng Mi, Rachel K. Rosenstein, Chongzhi Zang, Xiaoke Ma, Hai-Hui Xue\",\"doi\":\"10.1126/sciimmunol.adq8970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Bone marrow–derived multipotent hematopoietic progenitors seed the thymus and generate early thymic progenitors (ETPs). However, the factors governing ETP formation remain poorly defined. Using single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), we dissected the heterogeneity of transcriptomic and chromatin accessibility landscapes in murine ETPs. Whereas Tcf1<sup>−</sup> ETPs exhibited higher proliferative capacity, Tcf1<sup>+</sup> ETPs appeared to be immediate, more robust precursors to T lineage–specified early thymocytes. Prethymic ablation of Tcf1 and its homolog Lef1 severely impaired ETP formation in vivo. Whereas ablating Tcf1 alone had limited impact, loss of both Tcf1 and Lef1 impaired transcriptional activation of <i>Notch1</i> and Notch pathway effector molecules, including <i>Hes1</i> and <i>Hhex</i>, accompanied by aberrantly induced B cell and myeloid gene programs. Acute deletion of both factors compromised Notch pathway, glycolysis, and T cell gene programs in emergent ETPs ex vivo. Thus, Tcf1 and Lef1 act upstream of the Notch pathway, functioning as prethymic initiators of ETP fate and intrathymic gatekeepers of ETP identity and T lineage potential.</div>\",\"PeriodicalId\":21734,\"journal\":{\"name\":\"Science Immunology\",\"volume\":\"10 111\",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciimmunol.adq8970\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.adq8970","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Single-cell multiomics identifies Tcf1 and Lef1 as key initiators of early thymic progenitor fate
Bone marrow–derived multipotent hematopoietic progenitors seed the thymus and generate early thymic progenitors (ETPs). However, the factors governing ETP formation remain poorly defined. Using single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), we dissected the heterogeneity of transcriptomic and chromatin accessibility landscapes in murine ETPs. Whereas Tcf1− ETPs exhibited higher proliferative capacity, Tcf1+ ETPs appeared to be immediate, more robust precursors to T lineage–specified early thymocytes. Prethymic ablation of Tcf1 and its homolog Lef1 severely impaired ETP formation in vivo. Whereas ablating Tcf1 alone had limited impact, loss of both Tcf1 and Lef1 impaired transcriptional activation of Notch1 and Notch pathway effector molecules, including Hes1 and Hhex, accompanied by aberrantly induced B cell and myeloid gene programs. Acute deletion of both factors compromised Notch pathway, glycolysis, and T cell gene programs in emergent ETPs ex vivo. Thus, Tcf1 and Lef1 act upstream of the Notch pathway, functioning as prethymic initiators of ETP fate and intrathymic gatekeepers of ETP identity and T lineage potential.
期刊介绍:
Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.