{"title":"Chemically-fueled phase transition of a redox-responsive polymer.","authors":"Takafumi Enomoto, Aya M Akimoto, Ryo Yoshida","doi":"10.1080/14686996.2025.2494496","DOIUrl":"https://doi.org/10.1080/14686996.2025.2494496","url":null,"abstract":"<p><p>In living systems, dynamic biomacromolecular assemblies are driven and regulated by energy dissipative chemical reaction networks, enabling various autonomous functions. Inspired by this biological principle, we report a chemically-fueled phase transition of a poly(<i>N</i>-isopropylacrylamide) (PNIPAAm)-based polymer bearing viologen units (P(NIPAAm-V)), wherein redox changes drive coil-to-globule phase transitions. Upon the addition of a reducing agent, viologen moieties in P(NIPAAm-V) are converted into their reduced state, resulting in enhanced hydrophobicity and polymer aggregation. Coexistence of a platinum catalyst couples these redox-driven structural changes to hydrogen evolution, which oxidizes the viologen radicals, thus restoring the polymer chains to their hydrated random coil state. As a result, transient polymer assemblies form and subsequently disassemble upon depletion of the reducing agent, leading to a temporally controlled out-of-equilibrium phase transition. Moreover, by tuning the platinum concentration and reaction temperature, we achieve precise control of both the size and lifetime of these assemblies. Notably, viologen moieties constitute only about 1% of the polymer repeating units, underscoring that chemically-fueled phase transition is efficient strategy for dynamically regulating molecular assemblies. These findings demonstrate that chemically-fueled phase transitions in redox-responsive polymers offer a promising blueprint for designing dynamic, biomimetic materials capable of spatiotemporally regulated structural transformations.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2494496"},"PeriodicalIF":7.4,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144051830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asif Raza, Jae-Yeon Bang, Hyo-Yeong Kim, Jeong-Hee Choi, Hae-Young Choi, Sang-Min Lee
{"title":"Lithiophilic 3D-Si/SiO<sub>x</sub> host for dendrite free lithium metal battery via simple magnesiothermic reduction process.","authors":"Asif Raza, Jae-Yeon Bang, Hyo-Yeong Kim, Jeong-Hee Choi, Hae-Young Choi, Sang-Min Lee","doi":"10.1080/14686996.2025.2485868","DOIUrl":"https://doi.org/10.1080/14686996.2025.2485868","url":null,"abstract":"<p><p>In the development of renewable energy sources, batteries are considered the best option for energy storage. High energy density and high performance are key demands for emerging technologies. Lithium-metal batteries (LMBs) are considered promising candidates for storing generated energy. However, the formation of lithium dendrites and infinite volume expansion during cycling are serious limitations in current LMB applications. 3D-structured anodes have received considerable attention as an effective solution to overcome these problems. Herein, we synthesize a lithiophilic 3D-Si/SiO<sub>x</sub> host for LMBs via a simple magnesiothermic reduction process (MRP). The 3D porous SiO<sub>x</sub> structure provides a large specific surface area, which reduces local current density and offers ample space for Li deposition. The 3D-Si/SiO<sub>x</sub> anode not only accommodates volume changes but also demonstrates homogeneous, dendrite-free lithium deposition with a high coulombic efficiency of more than 99% at 0.1, 0.5, and 1.0C. The symmetric cell composed of prelithiated (4 mAh/cm<sup>2</sup>) 3D-Si/SiO<sub>x</sub> shows stable long-cycle performance for over 350 hours. By utilizing a single porous particle material with surface-limited lithiophilic properties, rather than the conventional complex 3D lithium anode designs (which typically involve hierarchical structures and lithium-friendly seed materials), this work provides new insights into the design of 3D lithium metal anodes.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2485868"},"PeriodicalIF":7.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144046689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shinsuke Ishihara, Jan Labuta, Jonathan P Hill, Takashi Nakanishi, Manabu Kakinohana, Nobuo Iyi
{"title":"NO tablet: autonomous generation of therapeutic nitric oxide in air through redox-promoted CO<sub>2</sub> adsorption.","authors":"Shinsuke Ishihara, Jan Labuta, Jonathan P Hill, Takashi Nakanishi, Manabu Kakinohana, Nobuo Iyi","doi":"10.1080/14686996.2025.2474788","DOIUrl":"https://doi.org/10.1080/14686996.2025.2474788","url":null,"abstract":"<p><p>Inhaled nitric oxide (iNO) is a powerful therapy for the treatment of various cardiopulmonary and respiratory diseases. However, access to iNO therapy is often limited by the necessity of cumbersome gas tanks and/or elaborate gas blending apparatus. Here, we report a lightweight, inexpensive, and maintenance-free tablet that autonomously generates a therapeutic quantity of NO in air. The tablet is composed of a thimble filter paper containing a powdery mixture of nitrite (NO<sub>2</sub> <sup>‒</sup>)-type layered double hydroxide (NLDH) and ascorbic acid loaded on silica gel (AASiO<sub>2</sub>). NLDH by itself generates trace amounts of NO in the air due to the left-shifting of the protonation equilibrium of NO<sub>2</sub> <sup>‒</sup> by aerial CO<sub>2</sub> and H<sub>2</sub>O (2[NO<sub>2</sub> <sup>‒</sup>]<sub>LDH</sub> + CO<sub>2</sub> + H<sub>2</sub>O <math><mo>⇌</mo></math> 2HNO<sub>2</sub>↑ + [CO<sub>3</sub> <sup>2‒</sup>]<sub>LDH</sub>), which is followed by disproportionation of 2HNO<sub>2</sub> to NO, NO<sub>2</sub> and H<sub>2</sub>O. In contrast, it was found that the protonation equilibrium can be shifted to the right side when volatile acid products (HNO<sub>2</sub> and NO<sub>2</sub>) are readily converted to neutral NO over the AASiO<sub>2</sub> reductant. Based on this, even a single tablet (containing 0.30 g NLDH and 0.90 g AASiO<sub>2</sub>) generates 5 ~ 20 ppm NO at 0.5 L/min for 24 h, which is sufficient to be useful for the relief of severe hypoxia caused by persistent pulmonary hypertension of the newborn (PPHN). Moreover, the tablet can be activated by exhaled breath for high-dose iNO therapy (80 ~ 180 ppm for several hours), revealing its potential utility for treating viral pneumonia. The NO tablet can be stored stably over long periods at ambient temperature in a gas barrier bag and has the potential to break the logistical, financial, and operational barriers that have long existed for the widespread implementation of iNO therapy.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2474788"},"PeriodicalIF":7.4,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Epitaxial lateral overgrowth of <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub> by halide vapor phase epitaxy.","authors":"Yuichi Oshima, Takashi Shinohe","doi":"10.1080/14686996.2025.2485869","DOIUrl":"https://doi.org/10.1080/14686996.2025.2485869","url":null,"abstract":"<p><p>We demonstrated the epitaxial lateral overgrowth of <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub> using halide vapor phase epitaxy. An <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub>/sapphire template with a patterned SiO<sub>2</sub> mask was used as the substrate. The highest lateral growth rate for a radial spoke-wheel patterned mask was obtained when the spoke was perpendicular to the <math> <mfenced><mrow><mn>11</mn> <mover><mn>2</mn> <mo>-</mo></mover> <mn>3</mn></mrow> </mfenced> </math> direction. In this case, the lateral-to-vertical growth rate ratio (<i>L</i>/<i>V</i> ratio), with <i>L</i> defined as the rate of increase in the width of an elongated α-Ga<sub>2</sub>O<sub>3</sub> island, was as large as 5.8. This ratio was greater than that reported for an <i>m</i>-direction stripe mask on <i>a</i>-plane α-Ga<sub>2</sub>O<sub>3</sub> by a factor of 3.3 and that for an <i>a</i>-direction stripe mask on <i>c</i>- and <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub> by a factor of 13. The epitaxial lateral overgrowth (ELO) of α-Ga<sub>2</sub>O<sub>3</sub> on a stripe mask (window/mask widths of 2.5 μm/7.5 μm) perpendicular to <math> <mfenced><mrow><mn>11</mn> <mover><mn>2</mn> <mo>-</mo></mover> <mn>3</mn></mrow> </mfenced> </math> resulted in the selective nucleation of elongated α-Ga<sub>2</sub>O<sub>3</sub> islands with a flat triangular cross-section on the window areas and their coalescence into a compact film. Transmission electron microscopy revealed that the dislocation density in the laterally grown area decreased drastically because the propagation of dislocations in the seed layer was effectively blocked by the mask. We believe these results greatly contribute to the realization of <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub>-based future power devices.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2485869"},"PeriodicalIF":7.4,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143995777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Casey Y Huang, Helen Nguyen, David J Lundy, James J Lai
{"title":"Rapid isolation of extracellular vesicles from stem cell conditioned medium using osmosis-driven filtration.","authors":"Casey Y Huang, Helen Nguyen, David J Lundy, James J Lai","doi":"10.1080/14686996.2025.2485668","DOIUrl":"https://doi.org/10.1080/14686996.2025.2485668","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) hold significant promise as biomarkers and therapeutics, yet their isolation remains challenging due to their low abundance and complex sample matrices. Here, we introduce EV-Osmoprocessor (EVOs), a novel device that leverages osmosis-driven filtration for rapid and efficient EV isolation. EVOs employs a high osmolarity polymer solution to concentrate EVs while simultaneously removing smaller contaminants. Compared to traditional methods such as ultracentrifugation and precipitation, EVOs offers speed and convenience, achieving a 50-fold volume reduction in under 2 h. Our results show that EVOs retained EVs and removed >99% albumin from the cell conditioned culture medium (CCM). The isolated EVs exhibited a particle size distribution centered around 140 nm, which was very similar to EVs isolated via precipitation or ultracentrifugation. The standalone EVOs process achieved a particle:protein ratio (EV purity) of ~10<sup>7</sup> particles/µg protein. Comprehensive characterization, including cryo-electron microscopy, validation of protein markers and known miRNA cargo confirmed the successful isolation of EVs. Functional assays, based on protection of cardiomyocytes from hypoxia/reoxygenation injury, demonstrated the bioactivity of EVOs-isolated EVs. Furthermore, we show that EVOs can be used to concentrate 30 ml of CCM into a 0.5 ml solution, which was then further processed with size-exclusion chromatography (SEC), improving EV purity to ~10<sup>9</sup> particles/µg protein. This work establishes EVOs as a promising tool for EV research and clinical applications, offering a streamlined approach to EV isolation with enhanced analytical performance.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2485668"},"PeriodicalIF":7.4,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-dimensional photonic crystal structure enhanced external-magnetic-field-free spintronic terahertz high-field emitter.","authors":"Zehao Yang, Jiahui Li, Shaojie Liu, Zejun Ren, Mingxuan Zhang, Chunyan Geng, Xiufeng Han, Caihua Wan, Xiaojun Wu","doi":"10.1080/14686996.2025.2478816","DOIUrl":"10.1080/14686996.2025.2478816","url":null,"abstract":"<p><p>Intense terahertz (THz) radiation in free space offers multifaceted capabilities for accelerating electron, understanding the mesoscale architecture in (bio)materials, elementary excitation and so on. Recently popularized spintronic THz emitters (STEs) with their versatility such as ultra-broadband, large-size and ease-for-integration have become one of the most promising alternative for the next generation of intense THz sources. Nevertheless, the typical W | Co <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> Fe <math><msub><mi> </mi> <mrow><mn>60</mn></mrow> </msub> </math> B <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> | Pt necessitates an external-magnetic-field to saturate magnetization for stable operation, limiting its scalability for achieving higher THz field with uniform distribution over larger sample areas. Here we demonstrate the methodologies of enhancing the high-field THz radiation of external-magnetic-field-free IrMn <math><msub><mi> </mi> <mn>3</mn></msub> </math> | Co <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> Fe <math><msub><mi> </mi> <mrow><mn>60</mn></mrow> </msub> </math> B <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> | W trilayer heterostructure via optimizing the substrate with superior thermal conductivity and integrating a one-dimensional photonic crystal (PC) structure to maximize the radiation efficiency. Under the excitation of a 1 kHz Ti: sapphire femtosecond laser amplifier with central wavelength of 800 nm, pulse duration of 35 fs, and maximum single pulse energy of 5.5 mJ, we successfully generate intense THz radiation with focal peak electric field up to 650 kV/cm with frequency range covering 0.1-5.5 THz from MgO-coated sample without external-magnetic-fields. These high-field STEs will also enable other applications such as ultra-broadband high-field THz spectroscopy and polarization-based large-size strong-field THz imaging.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2478816"},"PeriodicalIF":7.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Durable superhydrophobic surfaces on 3D-Printed structures inspired by beehive architecture.","authors":"Kengo Manabe, Makoto Saikawa, Tetsuhiro Iwai, Yasuo Norikane","doi":"10.1080/14686996.2025.2481824","DOIUrl":"https://doi.org/10.1080/14686996.2025.2481824","url":null,"abstract":"<p><p>This study presents an approach for fabricating durable superhydrophobic surfaces on 3D-printed structures inspired by the architectural design of beehives. Using fused deposition modeling (FDM) 3D printing technology, hexagonal macrostructures were fabricated using polylactic acid (PLA) filament. These structures were designed to protect an inner layer of hydrophobic nanoparticles, which were deposited by a squeegee coating method and immobilized by a photocurable resin. The relationship between hexagonal area size (ranging from 24 to 200 mm<sup>2</sup>) and the durability of superhydrophobic properties under frictional stress was systematically investigated. Wettability and surface morphology analyses performed before and after the friction tests showed that structures with hexagonal areas between 40 and 80 mm<sup>2</sup> retained superhydrophobicity even after 100 friction cycles, while larger hexagonal configurations exhibited diminished performance. To elucidate the underlying mechanisms, a theoretical model based on the Cassie-Baxter equation was developed and compared with experimental values alongside surface observations. This research advances the development of durable and functional superhydrophobic surfaces in 3D-printed materials, with promising implications for industries requiring water-repellent and self-cleaning technologies.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2481824"},"PeriodicalIF":7.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144037338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natsumi Ito, Ahmed Nabil, Koichiro Uto, Mitsuhiro Ebara
{"title":"Poly(ARTEMA), a novel artesunate-based polymer induces ferroptosis in breast cancer cells.","authors":"Natsumi Ito, Ahmed Nabil, Koichiro Uto, Mitsuhiro Ebara","doi":"10.1080/14686996.2025.2482514","DOIUrl":"https://doi.org/10.1080/14686996.2025.2482514","url":null,"abstract":"<p><p>Ferroptosis, a form of non-apoptotic cell death, is emerging as a promising strategy for cancer therapy. Artesunate (ART), an extract obtained from the traditional Chinese medicine Qinghaosu, has been shown to exhibit anti-cancer activity by inducing ferroptosis in cancer cells. While previous research has focused on incorporating ART monomer into drug delivery systems for enhanced cancer targeting, this study presents 2-methacryloyloxyethyl ART polymer (poly(ARTEMA)), a novel polymer synthesized from ART for the first time. Our goal was evaluation of poly(ARTEMA) anticancer potential on breast cancer cells. First, we synthesized ARTEMA using esterification followed by its polymerization using the reversible addition-fragmentation chain transfer (RAFT) polymerization method. We evaluated its mechanism of action, focusing on two key pathways: temperature-triggered singlet oxygen generation and ferrous ions (Fe<sup>2+</sup>) release, both of which contribute to ferroptosis. Our results demonstrate that poly(ARTEMA) selectively generates singlet oxygen and Fe<sup>2+</sup> due to the endoperoxide crosslinks, leading to cell death in breast cancer cells. We also investigated the anti-cancer potential of poly(ARTEMA) on breast cancer cells with and without a ferroptosis inhibitor. The IC<sub>50</sub> values were 125 µM for the MCF-7 cancer cell line and 300 µM for the normal MCF-10 cell line, indicating enhanced toxicity toward cancer cell lines. These findings suggested that poly(ARTEMA) induces ferroptosis in cancer cells and may serve as a promising candidate for cancer therapy with minimal cytotoxicity. To the best of our knowledge, this report may be the first that successfully synthesized poly(ARTEMA) using ART, with its anticancer potential evaluation.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2482514"},"PeriodicalIF":7.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and evaluation of a self-assembled nanoparticle-based prodrug for sustained delivery of 4-phenylbutyric acid.","authors":"Kikka Maeda, Babita Shashni, Hirofumi Matsui, Yukio Nagasaki","doi":"10.1080/14686996.2025.2482512","DOIUrl":"https://doi.org/10.1080/14686996.2025.2482512","url":null,"abstract":"<p><p>4-Phenylbutyric acid (PBA) is a small molecule with promising therapeutic potential for treating various diseases, including cancer and neurodegenerative disorders, due to its dual ability to reduce endoplasmic reticulum stress and inhibit histone deacetylases. However, its clinical application is hindered by rapid clearance from the body, necessitating frequent dosing that increases the risk of adverse effects. To address these limitations, we developed a nanoparticle-based prodrug (Nano<sup>PBA</sup>) utilizing the amphiphilic block copolymer poly(ethylene glycol)-<i>b</i>-poly(vinyl 4-phenylbutyrate) [PEG-<i>b</i>-P(VPBA)]. This system self-assembles into micelles, enabling controlled and sustained PBA delivery. The synthesis and characterization of Nano<sup>PBA</sup> revealed its high stability under physiological conditions and enzyme-responsive PBA release. Nano<sup>PBA</sup> demonstrated a controlled release profile <i>in</i> <i>vitro</i>, reducing burst release while maintaining therapeutic efficacy. Cytotoxicity assays using normal cell lines, including endothelial cells (BAEC), macrophages (RAW264.7), and rat gastric cells (RGM-1), showed minimal cytotoxic effects compared to the parent low-molecular-weight PBA. Furthermore, <i>in</i> <i>vivo</i> studies conducted in healthy C57BL/6J mice confirmed Nano<sup>PBA</sup>'s biocompatibility, with no significant adverse effects observed at therapeutic doses ranging from 200 to 500 mg-PBA/kg via oral administration. In conclusion, Nano<sup>PBA</sup> offers a controlled release profile, enhanced biocompatibility, and reduced toxicity, addressing the limitations associated with conventional PBA administration. These attributes make Nano<sup>PBA</sup> a promising candidate for improving the therapeutic efficacy and safety of PBA in clinical applications, particularly in diseases where maintaining consistent drug levels is crucial for treatment outcomes.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2482512"},"PeriodicalIF":7.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144051832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electroactive soft actuators utilizing PEDOT:PSS and 3D lithium-ion-conducting phosphate columnar liquid crystals embedded in a porous polyethylene membrane.","authors":"Chengyang Liu, Masafumi Yoshio","doi":"10.1080/14686996.2025.2475738","DOIUrl":"10.1080/14686996.2025.2475738","url":null,"abstract":"<p><p>This study introduces a novel supramolecular thermotropic columnar liquid-crystalline (LC) electrolyte tailored for high-performance ionic electroactive polymer (iEAP) actuators. The electrolyte is designed by integrating lithium salts into a taper-shaped molecule with bisphosphate moieties (BPO), which self-assembles into a columnar hexagonal (Col<sub>h</sub>) phase, forming 3D continuous ion-conductive pathways. This architecture achieves high ionic conductivity of up to 2 × 10<sup>-4</sup> S cm<sup>-1</sup> at room temperature. An actuator was fabricated by embedding this electrolyte into a microporous polyethylene membrane, sandwiched between PEDOT:PSS electrodes. The resulting device exhibits exceptional performance, achieving a bending strain of 0.52% and a force output of 0.5 mN under a ± 2 V, along with outstanding durability, retaining its performance over 9000 cycles. These results underscore the potential of 3D ion-conductive LC electrolytes in advancing iEAP actuator technologies, paving the way for innovative applications in tactile interfaces and soft robotics.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2475738"},"PeriodicalIF":7.4,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}