{"title":"One-dimensional photonic crystal structure enhanced external-magnetic-field-free spintronic terahertz high-field emitter.","authors":"Zehao Yang, Jiahui Li, Shaojie Liu, Zejun Ren, Mingxuan Zhang, Chunyan Geng, Xiufeng Han, Caihua Wan, Xiaojun Wu","doi":"10.1080/14686996.2025.2478816","DOIUrl":"10.1080/14686996.2025.2478816","url":null,"abstract":"<p><p>Intense terahertz (THz) radiation in free space offers multifaceted capabilities for accelerating electron, understanding the mesoscale architecture in (bio)materials, elementary excitation and so on. Recently popularized spintronic THz emitters (STEs) with their versatility such as ultra-broadband, large-size and ease-for-integration have become one of the most promising alternative for the next generation of intense THz sources. Nevertheless, the typical W | Co <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> Fe <math><msub><mi> </mi> <mrow><mn>60</mn></mrow> </msub> </math> B <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> | Pt necessitates an external-magnetic-field to saturate magnetization for stable operation, limiting its scalability for achieving higher THz field with uniform distribution over larger sample areas. Here we demonstrate the methodologies of enhancing the high-field THz radiation of external-magnetic-field-free IrMn <math><msub><mi> </mi> <mn>3</mn></msub> </math> | Co <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> Fe <math><msub><mi> </mi> <mrow><mn>60</mn></mrow> </msub> </math> B <math><msub><mi> </mi> <mrow><mn>20</mn></mrow> </msub> </math> | W trilayer heterostructure via optimizing the substrate with superior thermal conductivity and integrating a one-dimensional photonic crystal (PC) structure to maximize the radiation efficiency. Under the excitation of a 1 kHz Ti: sapphire femtosecond laser amplifier with central wavelength of 800 nm, pulse duration of 35 fs, and maximum single pulse energy of 5.5 mJ, we successfully generate intense THz radiation with focal peak electric field up to 650 kV/cm with frequency range covering 0.1-5.5 THz from MgO-coated sample without external-magnetic-fields. These high-field STEs will also enable other applications such as ultra-broadband high-field THz spectroscopy and polarization-based large-size strong-field THz imaging.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2478816"},"PeriodicalIF":7.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electroactive soft actuators utilizing PEDOT:PSS and 3D lithium-ion-conducting phosphate columnar liquid crystals embedded in a porous polyethylene membrane.","authors":"Chengyang Liu, Masafumi Yoshio","doi":"10.1080/14686996.2025.2475738","DOIUrl":"10.1080/14686996.2025.2475738","url":null,"abstract":"<p><p>This study introduces a novel supramolecular thermotropic columnar liquid-crystalline (LC) electrolyte tailored for high-performance ionic electroactive polymer (iEAP) actuators. The electrolyte is designed by integrating lithium salts into a taper-shaped molecule with bisphosphate moieties (BPO), which self-assembles into a columnar hexagonal (Col<sub>h</sub>) phase, forming 3D continuous ion-conductive pathways. This architecture achieves high ionic conductivity of up to 2 × 10<sup>-4</sup> S cm<sup>-1</sup> at room temperature. An actuator was fabricated by embedding this electrolyte into a microporous polyethylene membrane, sandwiched between PEDOT:PSS electrodes. The resulting device exhibits exceptional performance, achieving a bending strain of 0.52% and a force output of 0.5 mN under a ± 2 V, along with outstanding durability, retaining its performance over 9000 cycles. These results underscore the potential of 3D ion-conductive LC electrolytes in advancing iEAP actuator technologies, paving the way for innovative applications in tactile interfaces and soft robotics.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2475738"},"PeriodicalIF":7.4,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular design of dynamically thermoresponsive biomaterials.","authors":"Jun Kobayashi, Masamichi Nakayama, Kenichi Nagase","doi":"10.1080/14686996.2025.2475736","DOIUrl":"10.1080/14686996.2025.2475736","url":null,"abstract":"<p><p>Dynamically thermoresponsive biomaterials, particularly those utilizing poly(<i>N</i>-isopropylacrylamide) (PNIPAAm), have attracted much attention in biomedical applications due to their reversible phase transition near body temperature. These biomaterials provide innovations across drug delivery system, chromatography, and tissue engineering. Molecular designs, such as the incorporation of hydrophilic comonomers or graft copolymers in PNIPAAm hydrogels, enhance rapid kinetics of the gels when jumping the temperature across the phase transition temperature, because of avoiding 'skin layer' formation on the surface of the gels. Nanocarriers possessing PNIPAAm coronas facilitate spatial drug delivery and temporally on-demand drug release to targeted cancers in combination with hyperthermic therapy. Downsizing of PNIPAAm hydrogels accelerates the kinetics of shrinkage/swelling, leading to applications as thermoresponsive chromatographic matrices and cell cultureware. PNIPAAm-modified surfaces support thermoresponsive cell culture systems for the non-invasive recovery of intact cell sheets, enabling advanced regenerative therapies and layered 3D tissue formation. Recent developments also integrate growth factor delivery for sustained cell stimulation on culturewares. Newly developed biomaterials, including dynamically thermoresponsive PNIPAAm, are expected to expand the opportunity for novel treatment technologies such as targeted therapies and regenerative medicine.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2475736"},"PeriodicalIF":7.4,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cindy L Atencio-Martinez, Alexandre Lancelot, Jonathan J Wilker
{"title":"Formulation of catechol-containing adhesives for enhanced underwater bonding and workability.","authors":"Cindy L Atencio-Martinez, Alexandre Lancelot, Jonathan J Wilker","doi":"10.1080/14686996.2025.2467617","DOIUrl":"10.1080/14686996.2025.2467617","url":null,"abstract":"<p><p>Catechol-containing polymers inspired by marine mussels have gained significant interest in recent years, leading to applications in several fields. Among these polymer systems, poly(vinylcatechol-styrene) (PVCS) has become a popular option due to its exceptional underwater adhesion strength, with readily available monomers and diverse synthetic routes being available. However, the translation of any novel adhesive chemistry from academic research to real-world applications can be challenging. Acrylates, epoxies, and urethanes were introduced to markets over half a century ago and remain dominant. However, bonding in wet environments remains lacking. The work presented here addresses this gap by focusing on the formulation of PVCS-based adhesives for conditions outside of the research lab. An emphasis was placed on handling properties when working underwater. A collection of different substrates were bonded together and several commercial glues provided benchmarks. Environmental conditions were studied to broaden the potential applications of PVCS adhesives in underwater settings. By optimizing formulations, we present an adhesive system that retains the superior underwater bonding of PVCS while also offering enhanced workability. This approach may help open the door to utilization of a new adhesive chemistry for underwater applications.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2467617"},"PeriodicalIF":7.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in bioinspired polymer hydrogel systems with biomedical functionalities.","authors":"Kazuhiko Ishihara","doi":"10.1080/14686996.2025.2469490","DOIUrl":"10.1080/14686996.2025.2469490","url":null,"abstract":"<p><p>The concepts of bioinspiration and biomimetics that seek to elucidate the morphology and functions of living organisms and specific reactions within cells, and extraction of important elements from these concepts to design functional molecules and high-performance materials are becoming more and more widespread. This review summarizes the progress in research on hydrogels inspired by the stimuli-responsiveness of cell functions. For application to a self-regulated release system of insulin to regulate blood glucose levels, various polymer hydrogels have been designed using bioactive molecules such as enzymes and lectins to sense glucose concentrations. In addition, as a fully synthetic glucose-responsive hydrogel, a complex of a polymer having phenylboronic acid groups that form reversible bonds with sugars and a multivalent hydroxyl group polymer has been researched. This reversible hydrogel system can be further developed to act as an extracellular matrix in which cells can preferably reside. The proliferation and differentiation of encapsulated cells in hydrogels are controlled by reversible changes in the hydrogel properties in response to sugar. Another advantage is that cells can be safely retrieved by adding sugar to dissociate the hydrogel. These bioinspired polymer hydrogels can serve as important materials for the development of new medical technologies, such as the controlled release of bioactive molecules, regulated cell culture environmental matrices, and applications in layered and three-dimensional cell culture systems to create organized tissue structures.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2469490"},"PeriodicalIF":7.4,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of photocatalytic efficiency of copper oxide/zinc oxide-montmorillonite photocatalyst under visible light irradiation.","authors":"Chomponoot Suppaso, Nipaporn Pongkan, Sonchai Intachai, Wachiraya Rattanawongsa, Areebhorn Baoulan, Yusuke Yamauchi, Yusuke Asakura, Nithima Khaorapapong","doi":"10.1080/14686996.2025.2469484","DOIUrl":"10.1080/14686996.2025.2469484","url":null,"abstract":"<p><p>The formation of copper oxide and zinc oxide mixture in montmorillonite was conducted by the reaction of an aqueous dispersion of Cu<sup>2+</sup>/Zn<sup>2+</sup> exchanged montmorillonite and an aqueous solution of sodium hydroxide under hydrothermal treatment. The resulting product was characterized by X-ray diffraction, scanning and transmittance electron microscopies, as well as UV-visible and photoluminescence spectroscopies. The diffuse reflectance absorption spectra showed the absorption onsets due to copper oxide (885 nm) and zinc oxide (310 and 580 nm) in the product. The adsorption of methylene blue was fitted well by the Langmuir model with the maximum adsorption capacity of 454 mg⋅g<sup>-1</sup>. The thermodynamic studies revealed that the process is exothermic and spontaneous. The photocatalytic activity of the hybrid was assessed by the degradation of methylene blue in aqueous solution under visible light irradiation. The most active species in the photocatalytic process was hydroxyl radicals. The regenerated copper oxide/zinc oxide-montmorillonite was reused up to 5 cycles, the photodegradation efficiency dropped only 5% (from 94% to 89%), supporting the good stability of the photocatalyst. The result was in agreement with the advantages of the nanocomposite heterostructure and the unique nature of montmorillonite.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2469484"},"PeriodicalIF":7.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Foreword to the focus issue: frontline research on biomaterials-based bioengineering for future therapy.","authors":"Yuji Teramura, Horacio Cabral","doi":"10.1080/14686996.2025.2471206","DOIUrl":"10.1080/14686996.2025.2471206","url":null,"abstract":"","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2471206"},"PeriodicalIF":7.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subhadip Roy, Swagata Pan, Swaminathan Sivaram, Priyadarsi De
{"title":"Naphthalimide-based fluorescent polymeric probe: a dual-phase sensor for formaldehyde detection.","authors":"Subhadip Roy, Swagata Pan, Swaminathan Sivaram, Priyadarsi De","doi":"10.1080/14686996.2025.2469493","DOIUrl":"10.1080/14686996.2025.2469493","url":null,"abstract":"<p><p>Formaldehyde (FA) is a common pollutant found indoors and outdoors, posing a significant threat to human health. Therefore, developing sensitive and efficient detection methods for FA is essential for environmental monitoring and protecting public health. Herein, we report a naphthalimide-conjugated water-soluble polymeric fluorescent probe for the detection of FA in both aqueous and vapor phases using fluorimetric methods. The aromatic amines present in the side chain of the polymer react with FA, forming a Schiff base (imine bond). This imine formation inhibits the photoinduced electron transfer (PET) process within the polymer, leading to a 'turn-on' fluorescence under 365 nm UV light. The probe is capable of selectively sensing FA with a detection limit as low as 1.36 nM in aqueous medium. The formation of imine is confirmed for the model reaction between 6-(4-aminophenyl)-2-(4-((4-vinylbenzyl)oxy)phenyl)-1 h-benzo[de]isoquinoline-1,3(2 h)-dione and FA by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) titration methods. The mechanism behind 'turn-on' FA sensing is investigated using density functional theory (DFT) analysis. Additionally, the study demonstrates a facile approach for covalently attaching the polymer on the surface of a filter paper surface <i>via</i> ultraviolet (UV) light-induced cross-linking. Such polymer attached paper exhibits FA vapor sensing through changes in fluorescence intensity.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2469493"},"PeriodicalIF":7.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoshifumi Hirotsu, Morgan L Thomas, Yuko Takeoka, Masahiro Rikukawa, Masahiro Yoshizawa-Fujita
{"title":"Effect of cation side-chain structure on the physicochemical properties of pyrrolidinium-based electrolytes upon mixing with sodium salt.","authors":"Yoshifumi Hirotsu, Morgan L Thomas, Yuko Takeoka, Masahiro Rikukawa, Masahiro Yoshizawa-Fujita","doi":"10.1080/14686996.2025.2466417","DOIUrl":"10.1080/14686996.2025.2466417","url":null,"abstract":"<p><p>In recent years, the development of next-generation secondary batteries employing resource-abundant metals such as Na has garnered significant attention. However, the high reactivity of Na raises safety concerns, necessitating the development of safer devices. To address this, ionic liquids (ILs) and organic ionic plastic crystals (OIPCs) have emerged as promising novel electrolytes. Despite their potential, studies investigating the influence of cation structures on various properties remain scarce, particularly in composites where Na salts are introduced into OIPCs. This study focuses on the effects of cation species and Na-salt concentration in OIPCs, specifically in <i>N,N</i>-diethylpyrrolidinium bis(fluorosulfonyl)amide ([C<sub>2</sub>epyr][FSA]) and <i>N</i>-ethyl-<i>N</i>-isopropylpyrrolidinium bis(fluorosulfonyl)amide ([C<sub>i3</sub>epyr][FSA]), with the addition of sodium bis(fluorosulfonyl)amide (NaFSA). The phase transition behavior, dissociation state of Na salts, and electrochemical properties exhibited significant differences based on the cationic structure of the OIPCs. The combination of each OIPC with Na salt resulted in liquid mixtures, and the ionic conductivity increased significantly as the Na salt concentration increased. High ionic conductivities were achieved with [C<sub>2</sub>epyr][FSA]/NaFSA (20 mol%) and [C<sub>i3</sub>epyr][FSA]/NaFSA (10 mol%), showing values of 2.7 × 10<sup>-3</sup> and 2.2 × 10<sup>-3</sup> S cm<sup>-1</sup> at 25°C, respectively. Linear sweep voltammetry results indicated superior oxidative stability in the [C<sub>i3</sub>epyr][FSA] system. Solvation numbers of Na<sup>+</sup>, influenced by differences in cationic side-chain structures, were determined to be 2.7 for the [C<sub>2</sub>epyr]<sup>+</sup> system and 2.9 for the [C<sub>i3</sub>epyr]<sup>+</sup> system. The results suggest that controlling solvation numbers is a critical factor in the molecular design of high-performance ionic conductors.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2466417"},"PeriodicalIF":7.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<sup>64</sup>Cu-chelated InP/ZnSe/ZnS QDs as PET/fluorescence dual-modal probe for tumor imaging.","authors":"Ziyu Zhao, Ayaka Otsuka, Noriko Nakamura, Toshifumi Tatsumi, Kazuhiro Nakatsui, Taiki Tsuzukiishi, Tomo Sakanoue, Kenji Shimazoe, Seiichi Ohta","doi":"10.1080/14686996.2025.2463317","DOIUrl":"10.1080/14686996.2025.2463317","url":null,"abstract":"<p><p>Positron emission tomography (PET)/fluorescence dual-modal imaging combines deep penetration and high resolution, making it a promising approach for tumor diagnostics. Semiconductor nanocrystals, known as quantum dots (QDs), have garnered significant attention for fluorescence imaging owing to their tunable emission wavelength, high quantum yield, and excellent photostability. Among these QDs, heavy metal-free InP-based QDs have emerged as a promising candidate, addressing concerns regarding heavy metal-related toxicity. However, to the best of our knowledge, PET/fluorescence dual-modal imaging of InP QDs has yet to be explored. Here, we developed a novel PET/fluorescence imaging probe based on radioisotope (RI) -chelated InP/ZnSe/ZnS QDs for tumor imaging. The surface of the InP/ZnSe/ZnS QDs was functionalized with polyethylene glycol terminated with either a methoxy group or a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator group. Subsequently, the RI <sup>64</sup>Cu was chelated with DOTA on the surface of the InP/ZnSe/ZnS QDs, integrating their bright fluorescence with radioactivity. Using the obtained <sup>64</sup>Cu-chelated InP/ZnSe/ZnS QDs, PET/fluorescence dual-modal imaging of tumor-bearing mice was conducted, demonstrating successful multi-scale imaging from the whole body to the subcellular level. This novel PET/fluorescence dual-modal probe is expected to contribute to more precise tumor diagnosis.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2463317"},"PeriodicalIF":7.4,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}