Benchao Zheng, Hongbo Wang, Shiyi Zhai, Jiangsheng Li, Kuangda Lu
{"title":"光热-气体联合治疗促进结肠癌检查点阻断免疫治疗。","authors":"Benchao Zheng, Hongbo Wang, Shiyi Zhai, Jiangsheng Li, Kuangda Lu","doi":"10.1080/14686996.2025.2504867","DOIUrl":null,"url":null,"abstract":"<p><p>Checkpoint blockade immunotherapy emerges as a potential cure of cancer, but the monotherapy suffers from a low response rate in clinic. Photothermal therapy (PTT) that harvests light energy to ablate tumor is reported to activate tumor-specific immune response, meanwhile nitric oxide (NO) is considered to involve in immune regulation. Herein, we designed a multifunctional nanoplatform that enables photothermal-gas combination therapy by conjugating indocyanine green-thiol (ICG-SH) and s-nitrosoglutathione (GSNO) onto polyvinyl pyrrolidone (PVP)-coated gold nanoparticles (AIG). Upon near-infrared light (NIR) irradiation, AIG heats up the cancer cells and triggers NO release from GSNO, thus inducing apoptosis in the tumor. We found the combination of NO with photothermal treatment causes immunogenic cell death, which should synergize with checkpoint blockade immunotherapy. In the mouse colon cancer bilateral model, we observed complete eradication of light-irradiated tumors and suppression of distant untreated tumors in the AIG with anti-PD-1 (αPD-1) group. We detected significant increase of pro-inflammatory factors in serum, such as interferon- (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) after PTT-gas-immunotherapy treatment, indicating the successful activation of the immune response. The improved immunogenicity caused by AIG with αPD-1 group allows for efficient antigen presentation, as evidenced by the increased infiltration of dendritic cells (DCs) into the tumor-draining lymph nodes (LNs). We also found promoted infiltration of CD8<sup>+</sup> T cells in the untreated tumors in the AIG with αPD-1 group comparing to αPD-1 alone. Therefore, phototermal-gas-immune checkpoint blockade combination therapy represents a new promising treatment of metastatic cancer.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2504867"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12392434/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photothermal-gas combination therapy promotes checkpoint blockade immunotherapy in colon cancer.\",\"authors\":\"Benchao Zheng, Hongbo Wang, Shiyi Zhai, Jiangsheng Li, Kuangda Lu\",\"doi\":\"10.1080/14686996.2025.2504867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Checkpoint blockade immunotherapy emerges as a potential cure of cancer, but the monotherapy suffers from a low response rate in clinic. Photothermal therapy (PTT) that harvests light energy to ablate tumor is reported to activate tumor-specific immune response, meanwhile nitric oxide (NO) is considered to involve in immune regulation. Herein, we designed a multifunctional nanoplatform that enables photothermal-gas combination therapy by conjugating indocyanine green-thiol (ICG-SH) and s-nitrosoglutathione (GSNO) onto polyvinyl pyrrolidone (PVP)-coated gold nanoparticles (AIG). Upon near-infrared light (NIR) irradiation, AIG heats up the cancer cells and triggers NO release from GSNO, thus inducing apoptosis in the tumor. We found the combination of NO with photothermal treatment causes immunogenic cell death, which should synergize with checkpoint blockade immunotherapy. In the mouse colon cancer bilateral model, we observed complete eradication of light-irradiated tumors and suppression of distant untreated tumors in the AIG with anti-PD-1 (αPD-1) group. We detected significant increase of pro-inflammatory factors in serum, such as interferon- (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) after PTT-gas-immunotherapy treatment, indicating the successful activation of the immune response. The improved immunogenicity caused by AIG with αPD-1 group allows for efficient antigen presentation, as evidenced by the increased infiltration of dendritic cells (DCs) into the tumor-draining lymph nodes (LNs). We also found promoted infiltration of CD8<sup>+</sup> T cells in the untreated tumors in the AIG with αPD-1 group comparing to αPD-1 alone. Therefore, phototermal-gas-immune checkpoint blockade combination therapy represents a new promising treatment of metastatic cancer.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"26 1\",\"pages\":\"2504867\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12392434/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2025.2504867\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2504867","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Photothermal-gas combination therapy promotes checkpoint blockade immunotherapy in colon cancer.
Checkpoint blockade immunotherapy emerges as a potential cure of cancer, but the monotherapy suffers from a low response rate in clinic. Photothermal therapy (PTT) that harvests light energy to ablate tumor is reported to activate tumor-specific immune response, meanwhile nitric oxide (NO) is considered to involve in immune regulation. Herein, we designed a multifunctional nanoplatform that enables photothermal-gas combination therapy by conjugating indocyanine green-thiol (ICG-SH) and s-nitrosoglutathione (GSNO) onto polyvinyl pyrrolidone (PVP)-coated gold nanoparticles (AIG). Upon near-infrared light (NIR) irradiation, AIG heats up the cancer cells and triggers NO release from GSNO, thus inducing apoptosis in the tumor. We found the combination of NO with photothermal treatment causes immunogenic cell death, which should synergize with checkpoint blockade immunotherapy. In the mouse colon cancer bilateral model, we observed complete eradication of light-irradiated tumors and suppression of distant untreated tumors in the AIG with anti-PD-1 (αPD-1) group. We detected significant increase of pro-inflammatory factors in serum, such as interferon- (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) after PTT-gas-immunotherapy treatment, indicating the successful activation of the immune response. The improved immunogenicity caused by AIG with αPD-1 group allows for efficient antigen presentation, as evidenced by the increased infiltration of dendritic cells (DCs) into the tumor-draining lymph nodes (LNs). We also found promoted infiltration of CD8+ T cells in the untreated tumors in the AIG with αPD-1 group comparing to αPD-1 alone. Therefore, phototermal-gas-immune checkpoint blockade combination therapy represents a new promising treatment of metastatic cancer.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.