Enhanced rectification effect in silver chalcogenide-based thermal diode by using precipitation/dissolution of Ag impurity across the structure phase transition.
IF 6.9 3区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Enhanced rectification effect in silver chalcogenide-based thermal diode by using precipitation/dissolution of Ag impurity across the structure phase transition.","authors":"Keisuke Hirata, Yusuke Goto, Tsunehiro Takeuchi","doi":"10.1080/14686996.2025.2549674","DOIUrl":null,"url":null,"abstract":"<p><p>For developing high-performance composite-type thermal diodes, this study focuses on silver chalcogenides, which undergo structural phase transitions in the temperature range of 350 K to 473 K, accompanied by a significant stepwise change in thermal conductivity. Ag<sub>2 + <i>x</i></sub> Te<sub>0.9</sub>S<sub>0.1</sub> (<i>x</i> = 0, 0.01, 0.02, 0.025, 0.03, 0.035, 0.04, and 0.05) and Ag<sub>2</sub>S<sub>1 - <i>y</i></sub> Se <sub><i>y</i></sub> (<i>y</i> = 0.35, 0.375, 0.4, 0.425, and 0.45) samples were synthesized with precisely controlled compositions, and their temperature-dependent thermal conductivity across the phase transition was studied with the composition dependence. Ag<sub>2</sub>Te<sub>0.9</sub>S<sub>0.1</sub> exhibits a stepwise decrease in thermal conductivity with transitioning from the low-temperature phase (LTP) to the high-temperature phase (HTP), and this behavior was further enhanced by adding excess Ag. The added silver precipitated in the LTP and dissolved into the HTP of Ag<sub>2</sub>Te<sub>0.9</sub>S<sub>0.1</sub>, resulting in a maximum thermal conductivity change (<i>κ</i> <sub>LTP</sub> / <i>κ</i> <sub>HTP</sub>) of 2.7-fold with the phase transition at <i>x</i> = 0.025. On the other hand, the Ag<sub>2</sub>S<sub>1 - <i>y</i></sub> Se <sub><i>y</i></sub> samples exhibited a stepwise increase in thermal conductivity with transitioning from the LTP to the HTP, and the maximum thermal conductivity change of <i>κ</i> <sub>HTP</sub> / <i>κ</i> <sub>LTP</sub> = 5 was observed at <i>y</i> = 0.4. A composite thermal diode was fabricated using Ag<sub>2.025</sub>Te<sub>0.9</sub>S<sub>0.1</sub> and Ag<sub>2</sub>S<sub>0.6</sub>Se<sub>0.4</sub> with the length ratio of Ag<sub>2.025</sub>Te<sub>0.9</sub>S<sub>0.1</sub>: Ag<sub>2</sub>S<sub>0.6</sub>Se<sub>0.4</sub> = 47:53 and, consequently, exhibited <i>TRR</i> = 3.3 when it was placed between heat reservoirs maintained at <i>T</i> <sub>H</sub> = 412 K and <i>T</i> <sub>L</sub> = 300 K. This <i>TRR</i> value is the largest ever reported for all-solid-state composite thermal diodes.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2549674"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2549674","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For developing high-performance composite-type thermal diodes, this study focuses on silver chalcogenides, which undergo structural phase transitions in the temperature range of 350 K to 473 K, accompanied by a significant stepwise change in thermal conductivity. Ag2 + x Te0.9S0.1 (x = 0, 0.01, 0.02, 0.025, 0.03, 0.035, 0.04, and 0.05) and Ag2S1 - y Se y (y = 0.35, 0.375, 0.4, 0.425, and 0.45) samples were synthesized with precisely controlled compositions, and their temperature-dependent thermal conductivity across the phase transition was studied with the composition dependence. Ag2Te0.9S0.1 exhibits a stepwise decrease in thermal conductivity with transitioning from the low-temperature phase (LTP) to the high-temperature phase (HTP), and this behavior was further enhanced by adding excess Ag. The added silver precipitated in the LTP and dissolved into the HTP of Ag2Te0.9S0.1, resulting in a maximum thermal conductivity change (κLTP / κHTP) of 2.7-fold with the phase transition at x = 0.025. On the other hand, the Ag2S1 - y Se y samples exhibited a stepwise increase in thermal conductivity with transitioning from the LTP to the HTP, and the maximum thermal conductivity change of κHTP / κLTP = 5 was observed at y = 0.4. A composite thermal diode was fabricated using Ag2.025Te0.9S0.1 and Ag2S0.6Se0.4 with the length ratio of Ag2.025Te0.9S0.1: Ag2S0.6Se0.4 = 47:53 and, consequently, exhibited TRR = 3.3 when it was placed between heat reservoirs maintained at TH = 412 K and TL = 300 K. This TRR value is the largest ever reported for all-solid-state composite thermal diodes.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.