{"title":"供氧条件下(001)β-Ga2O3的盐酸气蚀行为","authors":"Yuichi Oshima, Takayoshi Oshima","doi":"10.1080/14686996.2025.2546285","DOIUrl":null,"url":null,"abstract":"<p><p>The planar and lateral HCl-gas etching behavior of (001) β-Ga<sub>2</sub>O<sub>3</sub> under oxygen supply were investigated at partial pressures of <i>P</i> <sup>0</sup>(O<sub>2</sub>) = 0-2.5 kPa and 645-1038°C, while maintaining a constant HCl supply partial pressure of <i>P</i> <sup>0</sup>(HCl) at 63 Pa. At 747°C, the planar etch rate (PER) exhibited a slight decrease with increasing <i>P</i> <sup>0</sup>(O<sub>2</sub>). Notably, at <i>P</i> <sup>0</sup>(O<sub>2</sub>) = 1.25 kPa, the PER increased with temperature, demonstrating a plateau between 747 and 848°C, whereas the thermodynamically calculated etching driving force did not. Even minimal O<sub>2</sub> supply effectively suppressed root mean square (RMS) roughness to <1 nm at 747°C. At <i>P</i> <sup>0</sup>(O<sub>2</sub>) = 1.25 kPa, RMS roughness remained at <2 nm at up to 847°C, but sharply increased to >7 nm above 947°C, indicating that lower temperatures realize smoother surfaces. Lateral etch rate (LER) analysis, employing a spoke-wheel pattern mask at 747°C revealed significant anisotropy, demonstrating a kidney-like polar plot pattern, with minimum values in the <100 > direction and maximum values in the <010> direction. Although <i>P</i> <sup>0</sup>(O<sub>2</sub>) had a limited effect on anisotropy, temperature increase significantly enhanced the LER, particularly along the ± 20°-rotated directions from <100> . Above 947°C, etched sidewalls exhibited a multi-faceted morphology owing to the formation of {310} and {3̅10} facets depending on the spoke direction, whereas the sidewalls were relatively smooth below 848°C. These findings underscore the potential of controlled HCl-gas etching for the plasma-free processing of β-Ga<sub>2</sub>O<sub>3</sub>, enabling the fabrication of high-performance devices.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2546285"},"PeriodicalIF":6.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409918/pdf/","citationCount":"0","resultStr":"{\"title\":\"HCl-gas etching behavior of (001) β-Ga<sub>2</sub>O<sub>3</sub> under oxygen supply.\",\"authors\":\"Yuichi Oshima, Takayoshi Oshima\",\"doi\":\"10.1080/14686996.2025.2546285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The planar and lateral HCl-gas etching behavior of (001) β-Ga<sub>2</sub>O<sub>3</sub> under oxygen supply were investigated at partial pressures of <i>P</i> <sup>0</sup>(O<sub>2</sub>) = 0-2.5 kPa and 645-1038°C, while maintaining a constant HCl supply partial pressure of <i>P</i> <sup>0</sup>(HCl) at 63 Pa. At 747°C, the planar etch rate (PER) exhibited a slight decrease with increasing <i>P</i> <sup>0</sup>(O<sub>2</sub>). Notably, at <i>P</i> <sup>0</sup>(O<sub>2</sub>) = 1.25 kPa, the PER increased with temperature, demonstrating a plateau between 747 and 848°C, whereas the thermodynamically calculated etching driving force did not. Even minimal O<sub>2</sub> supply effectively suppressed root mean square (RMS) roughness to <1 nm at 747°C. At <i>P</i> <sup>0</sup>(O<sub>2</sub>) = 1.25 kPa, RMS roughness remained at <2 nm at up to 847°C, but sharply increased to >7 nm above 947°C, indicating that lower temperatures realize smoother surfaces. Lateral etch rate (LER) analysis, employing a spoke-wheel pattern mask at 747°C revealed significant anisotropy, demonstrating a kidney-like polar plot pattern, with minimum values in the <100 > direction and maximum values in the <010> direction. Although <i>P</i> <sup>0</sup>(O<sub>2</sub>) had a limited effect on anisotropy, temperature increase significantly enhanced the LER, particularly along the ± 20°-rotated directions from <100> . Above 947°C, etched sidewalls exhibited a multi-faceted morphology owing to the formation of {310} and {3̅10} facets depending on the spoke direction, whereas the sidewalls were relatively smooth below 848°C. These findings underscore the potential of controlled HCl-gas etching for the plasma-free processing of β-Ga<sub>2</sub>O<sub>3</sub>, enabling the fabrication of high-performance devices.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"26 1\",\"pages\":\"2546285\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409918/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2025.2546285\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2546285","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
HCl-gas etching behavior of (001) β-Ga2O3 under oxygen supply.
The planar and lateral HCl-gas etching behavior of (001) β-Ga2O3 under oxygen supply were investigated at partial pressures of P0(O2) = 0-2.5 kPa and 645-1038°C, while maintaining a constant HCl supply partial pressure of P0(HCl) at 63 Pa. At 747°C, the planar etch rate (PER) exhibited a slight decrease with increasing P0(O2). Notably, at P0(O2) = 1.25 kPa, the PER increased with temperature, demonstrating a plateau between 747 and 848°C, whereas the thermodynamically calculated etching driving force did not. Even minimal O2 supply effectively suppressed root mean square (RMS) roughness to <1 nm at 747°C. At P0(O2) = 1.25 kPa, RMS roughness remained at <2 nm at up to 847°C, but sharply increased to >7 nm above 947°C, indicating that lower temperatures realize smoother surfaces. Lateral etch rate (LER) analysis, employing a spoke-wheel pattern mask at 747°C revealed significant anisotropy, demonstrating a kidney-like polar plot pattern, with minimum values in the <100 > direction and maximum values in the <010> direction. Although P0(O2) had a limited effect on anisotropy, temperature increase significantly enhanced the LER, particularly along the ± 20°-rotated directions from <100> . Above 947°C, etched sidewalls exhibited a multi-faceted morphology owing to the formation of {310} and {3̅10} facets depending on the spoke direction, whereas the sidewalls were relatively smooth below 848°C. These findings underscore the potential of controlled HCl-gas etching for the plasma-free processing of β-Ga2O3, enabling the fabrication of high-performance devices.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.