Rubber Chemistry and Technology最新文献

筛选
英文 中文
QUEST FOR SUSTAINABLE CURATIVES FOR CHLOROPRENE RUBBER: A COMPREHENSIVE REVIEW 寻求氯丁橡胶的可持续治疗方法:全面审查
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-11-07 DOI: 10.5254/rct.22.77981
M. De Sarkar, N. Fujii, Yasushi Abe, Yasuhiro Kamba, T. Sunada
{"title":"QUEST FOR SUSTAINABLE CURATIVES FOR CHLOROPRENE RUBBER: A COMPREHENSIVE REVIEW","authors":"M. De Sarkar, N. Fujii, Yasushi Abe, Yasuhiro Kamba, T. Sunada","doi":"10.5254/rct.22.77981","DOIUrl":"https://doi.org/10.5254/rct.22.77981","url":null,"abstract":"\u0000 Chloroprene rubber (CR) is one of the most versatile synthetic rubbers suitable for numerous industrial applications. For years, zinc oxide (ZnO) has been satisfactorily used as the vulcanization activator for CR, typically with organic accelerator(s). Ethylene thiourea (ETU) is the most widely used accelerator, offering the best balance between cost and performance in CR vulcanizates. Recently, the ZnO level in rubber compounds has become a pressing issue because of its harmful environmental impacts. ETU is classified as a substance of potentially serious health risks. It is therefore imperative to identify sustainable crosslinking additives for CR from both technical and commercial standpoints. The key purpose of this review is to collate the significant lines of technological advances made to identify proecological curative options for CR and update the information up to the current year. In preparation for this review, pertinent scholarly articles on the curing of CR, published in scientific journals mainly in the past two decades, were assessed. Since the scope of this review is to capture the significant technical efforts available in the public domain, the reference list is therefore not necessarily an exhaustive one. Reports dealing with proprietary chemicals or undisclosed technical strategies are beyond the purview of this review.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45040063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
DOPO-BASED FLAME RETARDANT: PREPARATION AND ITS APPLICATION IN SILICONE RUBBER BLENDS dopo基阻燃剂的制备及其在硅橡胶共混物中的应用
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-11-07 DOI: 10.5254/rct.22.78969
Xu Mengyang, Liu Cheng, Wang Jincheng
{"title":"DOPO-BASED FLAME RETARDANT: PREPARATION AND ITS APPLICATION IN SILICONE RUBBER BLENDS","authors":"Xu Mengyang, Liu Cheng, Wang Jincheng","doi":"10.5254/rct.22.78969","DOIUrl":"https://doi.org/10.5254/rct.22.78969","url":null,"abstract":"\u0000 In this study, a phosphorus-containing flame retardant, polybis(4-hydroxypheyl)-2-(6-oxo-6-H-dibenzodibenzo [c,e][1,2] oxaphosphino-6-yl) methylene succinate (PHDO) was prepared by melt condensation between (6H-dibenz[c,e][1,2]oxaphosphorin-6-ylmethyl)-p-oxide-butanedioic acid (DDP) and 1,4-benzene dimethanol (PXG). Then, Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonance (1H NMR) were used to characterize the structure of this novel additive. It was added to silicone rubber (SR) in different proportions, and the flame retardant properties together with tensile behaviors of the SR blends were investigated. Results showed that the thermal stability was improved and the burning rate was slowed down after addition of this novel flame retardant. Vertical burning test, cone calorimetric evaluation, and limited oxygen index (LOI) measurement of the samples revealed that the SR with 15 phr of PHDO owned the best flame retardant properties and may pass UL-94 V-0 grade. This improved flame retardant performance may be ascribed to the formation of dense carbon layers, which effectively prevented the surface oxidation and inhibited combustion of the silicone matrix.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48184964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DIFFERENT APPROACH TO THE MECHANISM OF ADHESION OF SURFACE TREATED WITH TRICHLOROISOCYANURIC ACID SOLUTION RUBBER AND POLYURETHANE ADHESIVE JOINTS 三氯异氰尿酸溶液橡胶与聚氨酯胶接面粘接机理的不同探讨
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-11-02 DOI: 10.5254/rct.22.77974
Verónica Pascual-Sánchez, J. Martín-Martínez
{"title":"DIFFERENT APPROACH TO THE MECHANISM OF ADHESION OF SURFACE TREATED WITH TRICHLOROISOCYANURIC ACID SOLUTION RUBBER AND POLYURETHANE ADHESIVE JOINTS","authors":"Verónica Pascual-Sánchez, J. Martín-Martínez","doi":"10.5254/rct.22.77974","DOIUrl":"https://doi.org/10.5254/rct.22.77974","url":null,"abstract":"\u0000 Although the effects produced by the surface treatment of rubber with organic solvent solutions of trichloroisocyanuric acid (TCI) leading to improved adhesion to polyurethane (PU) adhesive have been established, the mechanism of adhesion involved is still unclear. In this study, the reaction of TCI species on the rubber surface with the polyurethane adhesive leading to the formation of chemical bonds was proposed as the relevant mechanism of adhesion. As a model, TCI was added to polyurethane adhesive (PU + TCI), and a polyurethane film was immersed in TCI solution (PU − TCI), their surface, structural, and viscoelastic properties were monitored for different times. The formation of chemical bonds between the polyurethane chains and TCI species derived from the solid TCI crystals on the rubber surface during bonding formation, and the crosslinking/hardening of the polyurethane surface were evidenced. The reaction with TCI species increased the surface energy on the polyurethane, mainly the polar component, similar surface energies were obtained in both PU + TCI and PU − TCI after 7 days. The enhanced surface energies on the PU that reacted with TCI were ascribed to the creation of new C–Cl and C=O species, their percentages were higher on PU + TCI than on PU − TCI surface. On the other hand, new N–H stretching and carbonyl species were produced; this indicated that TCI species interacted with the hard segments. Furthermore, the crystallization peaks in PU + TCI and PU − TCI at higher temperatures and lower enthalpies than in the PU indicated the disruption of the interactions between the soft segments. Therefore, the structural changes in the PU caused by reaction with TCI species affected their degree of phase separation and viscoelastic properties. The addition of solid TCI to the PU caused a noticeable degradation and hardening, the extent of degradation was more marked by increasing the time, this led to lower mechanical properties.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43501559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
APPROACHING SUSTAINABILITY: NANOCELLULOSE REINFORCED ELASTOMERS—A REVIEW 接近可持续性:纳米纤维素增强弹性体综述
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-10-01 DOI: 10.5254/rct.22.77013
Milanta Tom, Sabu Thomas, B. Seantier, Y. Grohens, P. K. Mohamed, J. Haponiuk, Jaehwan Kim
{"title":"APPROACHING SUSTAINABILITY: NANOCELLULOSE REINFORCED ELASTOMERS—A REVIEW","authors":"Milanta Tom, Sabu Thomas, B. Seantier, Y. Grohens, P. K. Mohamed, J. Haponiuk, Jaehwan Kim","doi":"10.5254/rct.22.77013","DOIUrl":"https://doi.org/10.5254/rct.22.77013","url":null,"abstract":"\u0000 Awareness of the environmental implications of conventional reinforcing fillers and the urge to reduce the carbon footprint have lead researchers to focus more on natural and sustainable materials. Nanocellulose from multitudinous sources finds use in elastomer engineering because of its distinctive properties, such as renewability, sustainability, abundance, biodegradability, high aspect ratio, excellent mechanical properties, and low cost. Green alternatives for conventional fillers in elastomer reinforcing have gained considerable interest to curb the risk of fillers from nonrenewable sources. The differences in properties of nanocellulose and elastomers render attractiveness in the search for synergistic properties resulting from their combination. This review addresses the isolation techniques for nanocellulose and challenges in its incorporation into the elastomer matrix. Surface modifications for solving incompatibility between filler and matrices are discussed. Processing of nanocomposites, various characterization techniques, mechanical behavior, and potential applications of nanocellulose elastomer composites are also discussed in detail.\u0000","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45596772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ADHESION AND HYSTERETIC FRICTION OF TIRE TREAD RUBBERS HAVING PROCESS OILS WITH DIFFERENT AROMATIC CONTENT 不同芳香族工艺油对轮胎胎面胶的附着力和滞回摩擦性能的影响
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-09-29 DOI: 10.5254/rct.22.77937
Iman Abbasi Shahdehi, M. Alimardani, M. Razzaghi‐Kashani, Hossein Roshanaei
{"title":"ADHESION AND HYSTERETIC FRICTION OF TIRE TREAD RUBBERS HAVING PROCESS OILS WITH DIFFERENT AROMATIC CONTENT","authors":"Iman Abbasi Shahdehi, M. Alimardani, M. Razzaghi‐Kashani, Hossein Roshanaei","doi":"10.5254/rct.22.77937","DOIUrl":"https://doi.org/10.5254/rct.22.77937","url":null,"abstract":"\u0000 The extent of modification of wet grip of tire tread rubber by safe aromatic process oils has been the subject of controversy, as this property has conventionally been judged by indirect methods such as the loss factor at 0 °C. The present work aims to directly measure the dry and wet frictional behavior of rubbers containing various loadings of distillate aromatic extract (DAE) or treated distillate aromatic extract (TDAE) and to elucidate the contributions resulting from the adhesion and the hysteretic terms of friction. Physico-mechanical tests including rubber hardness, rubber–substrate work of adhesion, rubber–oil compatibility, hysteretic properties, and the rubber glass transition temperature were evaluated to disclose the underlying friction mechanisms. Interestingly, TDAE-containing rubbers presented a comparable or even better hysteretic friction not only at low oil loadings but also at high oil levels. As the loss factor properties of DAE and TDAE are very close to each other and there is the possibility of a crossover point within the frictional zone, care must be exercised not to merely rely on the values of tanδ at 0 °C in judging the preference of DAE or TDAE with regard to the wet grip performance.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42596487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
INVESTIGATION OF THE NONLINEAR DYNAMIC STIFFNESS OF ROLLING-LOBE AIR SPRINGS CONSIDERING RUBBER PAYNE EFFECT 考虑橡胶佩恩效应的滚叶空气弹簧非线性动刚度研究
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-09-08 DOI: 10.5254/rct.22.77996
Mingyu Wu, Shiwei Wang, Hao Tong, Jing Wang, Hang Yin, Wenbo Zheng, Yaochao Li, Zhen Yu, Yintao Wei
{"title":"INVESTIGATION OF THE NONLINEAR DYNAMIC STIFFNESS OF ROLLING-LOBE AIR SPRINGS CONSIDERING RUBBER PAYNE EFFECT","authors":"Mingyu Wu, Shiwei Wang, Hao Tong, Jing Wang, Hang Yin, Wenbo Zheng, Yaochao Li, Zhen Yu, Yintao Wei","doi":"10.5254/rct.22.77996","DOIUrl":"https://doi.org/10.5254/rct.22.77996","url":null,"abstract":"\u0000 A nonlinear dynamic stiffness model of rolling-lobe air spring considering the Payne effect of the rubber diaphragm and the thermodynamic equivalent damping is proposed, with an aim to provide a theoretical basis for air spring structure design. A physical explanation and mathematical expression of each decoupled contribution term are given from the two dimensions of amplitude and frequency. An indicator test was designed to identify related parameters of the real and imaginary parts of dynamic stiffness. The results showed that the dynamic stiffness increases under a small excitation amplitude, verifying the correctness of the model considering the Payne effect. The influence of rubber diaphragm and gas terms is decoupled to separately illustrate the amplitude and frequency dependency of the real and imaginary parts of dynamic stiffness. A new evaluation index reflecting the contribution percentage of the rubber diaphragm is given, indicating that the stiffness of the rubber diaphragm at low amplitude cannot be ignored. In the end, the parameter influence and dynamic characteristics are provided so that the dynamic behavior of the rolling-lobe air spring can be predicted at the design stage. The proposed rolling-lobe air spring dynamic model considering the Payne effect of the rubber diaphragm provides guidance for the forward development and theoretical modeling of the air spring.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42554627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
SYNERGIZED THERMAL STABILIZATION EFFECT OF ACID ACCEPTORS ON PEROXIDE CROSSLINKED CHLOROPRENE RUBBER 酸受体对过氧化物交联氯丁橡胶的协同热稳定作用
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-09-02 DOI: 10.5254/rct.22.77945
Zahra Shahroodi, A. Katbab
{"title":"SYNERGIZED THERMAL STABILIZATION EFFECT OF ACID ACCEPTORS ON PEROXIDE CROSSLINKED CHLOROPRENE RUBBER","authors":"Zahra Shahroodi, A. Katbab","doi":"10.5254/rct.22.77945","DOIUrl":"https://doi.org/10.5254/rct.22.77945","url":null,"abstract":"\u0000 Chloroprene rubber (CR) vulcanizates have been widely used in various industrial applications due to their excellent mechanical properties such as elasticity, elongation at break, and superior resistance to chemicals, flame, etc. Because of the specific microstructures of CR, it is mainly vulcanized by metal oxide vulcanizing systems. However, CR undergoes rapid thermal degradation when it is crosslinked by peroxide curing systems at high temperatures. Although peroxide curing systems such as dicumyl peroxide (DCP) have attracted tremendous attention in the vulcanization of various saturated and unsaturated elastomers to achieve high-performance engineering properties, it is avoided for CR due to the occurrence of thermal decomposition, which is catalyzed by hydrochloric acid (HCl) vapors released during crosslinking. In the present work, by exploiting different acid acceptors, attempts have been made to design a vulcanizing system composed of inorganic–organic materials as acid acceptors to increase the potential of hindering the thermal decomposition in the CR phase. The designed system provides an accelerated system with a high crosslink density and mechanical properties comparable to metal oxide cured CR with elongation at break of ∼1000% and tensile strength of 10.3 MPa. The extent of thermal stabilization in the CR phase provided by the designed acid acceptor system was studied with thermogravimetric analysis.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44916907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
EFFECTS OF EVEN FUNCTIONAL GROUP DISTRIBUTION IN EMULSION STYRENE–BUTADIENE RUBBER PREPARED BY REVERSIBLE ADDITION–FRAGMENTATION CHAIN TRANSFER POLYMERIZATION ON THE PROPERTIES OF SILICA-FILLED COMPOUNDS 可逆加成-断裂链转移聚合制备的乳液丁苯橡胶中均匀官能团分布对硅填充化合物性能的影响
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-08-26 DOI: 10.5254/rct.22.77993
Sanghoon Song, Kiwon Hwang, Donghyuk Kim, Gyeongchan Ryu, B. Ahn, H. Jeon, S. Chung, Wonho Kim
{"title":"EFFECTS OF EVEN FUNCTIONAL GROUP DISTRIBUTION IN EMULSION STYRENE–BUTADIENE RUBBER PREPARED BY REVERSIBLE ADDITION–FRAGMENTATION CHAIN TRANSFER POLYMERIZATION ON THE PROPERTIES OF SILICA-FILLED COMPOUNDS","authors":"Sanghoon Song, Kiwon Hwang, Donghyuk Kim, Gyeongchan Ryu, B. Ahn, H. Jeon, S. Chung, Wonho Kim","doi":"10.5254/rct.22.77993","DOIUrl":"https://doi.org/10.5254/rct.22.77993","url":null,"abstract":"\u0000 Recently, considerable attention has been paid to the development of new functionalized polymers to improve the fuel efficiency of vehicles by reducing the rolling resistance of tires to adhere to strict CO2 emission regulations. Accordingly, multifunctionalized (MF) reversible addition–fragmentation chain transfer (RAFT) emulsion styrene–butadiene rubbers (ESBR) were synthesized, in which chain-end and in-chain functionalization were performed simultaneously by introducing a third monomer (glycidyl methacrylate; GMA) using RAFT polymerization. Compared with GMA ESBR, in which GMA is introduced as a third monomer by conventional radical polymerization (CRP), there was an even distribution of GMA per chain in the MF-RAFT ESBR. After preparing the silica-filled compounds, vulcanizate structure analysis and mechanical property evaluation of the compounds were performed. The MF-RAFT ESBR prepared by RAFT polymerization exhibited superior in-chain functionalization efficiency compared with GMA ESBR prepared by CRP because of the even distribution of GMA and higher crosslink density. Consequently, MF-RAFT ESBR compound showed superior silica dispersion, abrasion resistance, and lower rolling resistance compared with the GMA ESBR compound.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44516085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
NEW AND HIGHLY EFFICIENT METHOD TO MEASURE STEADY SHEAR VISCOSITY AND WALL SLIP OF RUBBER COMPOUNDS: CLOSED-BOUNDARY RHEOMETER (RPA) 新型高效测量橡胶胶料稳定剪切粘度和壁滑移的方法——封闭边界流变仪(rpa)
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-08-09 DOI: 10.5254/rct.22.77929
H. Burhin, Thomas Rauschmann, H. Graf
{"title":"NEW AND HIGHLY EFFICIENT METHOD TO MEASURE STEADY SHEAR VISCOSITY AND WALL SLIP OF RUBBER COMPOUNDS: CLOSED-BOUNDARY RHEOMETER (RPA)","authors":"H. Burhin, Thomas Rauschmann, H. Graf","doi":"10.5254/rct.22.77929","DOIUrl":"https://doi.org/10.5254/rct.22.77929","url":null,"abstract":"\u0000 The rubber process analyzer was commercialized by Monsanto Rubber Instrument and Equipment company in the early 1990s. In its initial version, the RPA was able to perform only oscillatory-type tests, which varied in frequency and strain. Later, it offered a controlled strain–stress relaxation test. Only recently and not for all models has a controlled steady shear test been made available. Using this type of test, the instrument has successfully measured steady shear viscosity with high repeatability without correction. The results fit well with other rheometers or viscometers when no-slip conditions are ensured. The closed-boundary configuration prevents edge fracture, as commonly experienced with open-boundary rheometers (DMA) on high-viscosity, high-elasticity materials. A comparison of results using grooved dies (no-slip) and polished dies (slip) readily provides wall slip velocity under constant pressure. The results of wall slip versus shear stress follow a power-law function per the Navier slip law [F(V) = −k(Vr)e]. This method separates the shear rate from pressure effects on wall slip. It questions pressure-driven flow instruments (capillary rheometer), which use pressure measurements for shear stress calculations, and prevents an easy and controlled change of the die surface roughness.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45343906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
PROCESS OPTIMIZATION OF GREEN AQUEOUS-BASED EXTRACTION TECHNOLOGY OF TARAXACUM KOK-SAGHYZ RUBBER 绿色水基提取蒲公英橡胶工艺优化
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-08-03 DOI: 10.5254/rct.22.77883
Ruifeng Zhao, Genshi Liu, Rongzhen Fu, Jichuan Zhang, Xiang Jie, Yiyang Dong, Zifeng He, Q. Nie
{"title":"PROCESS OPTIMIZATION OF GREEN AQUEOUS-BASED EXTRACTION TECHNOLOGY OF TARAXACUM KOK-SAGHYZ RUBBER","authors":"Ruifeng Zhao, Genshi Liu, Rongzhen Fu, Jichuan Zhang, Xiang Jie, Yiyang Dong, Zifeng He, Q. Nie","doi":"10.5254/rct.22.77883","DOIUrl":"https://doi.org/10.5254/rct.22.77883","url":null,"abstract":"Taraxacum kok-saghyz (TKS), known as Russian dandelion, can produce high-quality natural rubber. The dry weight content of rubber in the TKS roots was found to be approximately 6–9%, of which 61% and 39% were stored in the root bark and root flesh, respectively. The content of lignin and holocellulose accounted for about 40% of the total root. Two new aqueous-based rubber extraction processes were proposed and optimized, namely, the strong water shearing process and the acid–base extraction process. These two processes made the purity of rubber reach about 91% and 94%, respectively. TKS rubber was characterized as having similar composition, and molecular structure to Hevea NR, and TKS rubber samples did not exhibit the strain-induced crystallization (SIC) phenomenon. TKS rubber was blended into a winter tire tread formulation and tested. The results showed no significant differences in processing and mechanical properties from the other formulations.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43865827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信