Rubber Chemistry and Technology最新文献

筛选
英文 中文
FOAMING AND MOISTURE CROSSLINKING OF VINYL TRIETHOXY SILANE GRAFTED ETHYLENE–PROPYLENE–DIENE TERPOLYMER 乙烯基三乙氧基硅烷接枝乙烯-丙烯-二烯三元共聚物的发泡和湿交联
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2022-01-03 DOI: 10.5254/rct.21.78953
Zhengwei Lin, Qinghong Zhang, Gongliang Wang, Jie Mao, M. Hoch, Xinyan Shi
{"title":"FOAMING AND MOISTURE CROSSLINKING OF VINYL TRIETHOXY SILANE GRAFTED ETHYLENE–PROPYLENE–DIENE TERPOLYMER","authors":"Zhengwei Lin, Qinghong Zhang, Gongliang Wang, Jie Mao, M. Hoch, Xinyan Shi","doi":"10.5254/rct.21.78953","DOIUrl":"https://doi.org/10.5254/rct.21.78953","url":null,"abstract":"\u0000 Moisture crosslinking of polyolefins has attracted increasing attention because of its high efficiency, low cost, and easy processing. However, the crucial shortcoming of moisture crosslinking is that the side reaction of peroxide scorch (precrosslinking) simultaneously occurs in silane grafting. It has been recognized that making peroxide precrosslinking useful is an effective way to broaden the application of moisture crosslinking. A novel foaming process combined with moisture crosslinking is proposed. The matrix of ethylene–propylene–diene terpolymer grafted with silane vinyl triethoxysilane (EPDM-g-VTES) was prepared by melt grafting, with dicumyl peroxide as initiator. Foaming was then carried out with azodicarbonamide (AC) as the blowing agent by making use of precrosslinking. Subsequently, the EPDM-g-VTES foams were immersed in a water bath to achieve moisture crosslinking with dibutyl tin dilaurate as the catalyst. The results showed that VTES was grafted onto EPDM and the EPDM-g-VTES foams were successfully crosslinked by moisture. The EPDM-g-VTES compounds with AC obtained great cells by compression molding with the help of precrosslinking. The mechanical property of the EPDM-g-VTES foam was improved by moisture crosslinking. The moisture-cured foam with 4 wt% AC had an expansion ratio of about three times, which could bear large deformation and showed a high energy-absorption effect.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48784095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
SPECIALTY NATURAL RUBBER LATEX FOAM: FOAMABILITY STUDY AND FABRICATION PROCESS 特种天然胶乳泡沫:发泡性研究及制造工艺
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2021-12-27 DOI: 10.5254/rct.21.78938
Roslim Ramli, A. Chai, Jee-Hou Ho, S. Kamaruddin, F. Rasdi, D. S. D. De Focatiis
{"title":"SPECIALTY NATURAL RUBBER LATEX FOAM: FOAMABILITY STUDY AND FABRICATION PROCESS","authors":"Roslim Ramli, A. Chai, Jee-Hou Ho, S. Kamaruddin, F. Rasdi, D. S. D. De Focatiis","doi":"10.5254/rct.21.78938","DOIUrl":"https://doi.org/10.5254/rct.21.78938","url":null,"abstract":"\u0000 Specialty natural rubber (SpNR) latex, namely, deproteinized natural rubber (DPNR) latex and epoxidized natural rubber (ENR) latex, has been produced to meet specific product's requirements. However, SpNR is normally used in the form of block rubber to manufacture dry rubber products such as tires and automotive parts. The applications of SpNR latex into latex foam products will be diversified. Findings indicate that foamability of SpNR latex is lower compared to normal latex (LATZ) but shows longer stability time after foamed. Findings also indicate that foam collapse and foam coagulate are two main challenges in the fabrication process of SpNR latex foam. Despite these challenges, SpNR latex foam can be fabricated at different density levels. During the foaming process, additional foaming agent is required to fabricate a SpNR latex foam, which is different from fabricating a normal NR latex foam, especially at low latex foam density. Consequently, a higher level of sodium silicofluoride, used as the gelling agent, is required to set the cell structure of the foam. Findings also indicate that foam density influenced the gelling time and volume shrinkage of the SpNR latex foam. An ideal compounding, foaming, and gelling formulation to fabricate SpNR latex foam via Dunlop batch foaming process has been developed. Morphological study showed that all latex foams are open-cell structure, with lower density foam exhibiting higher porosity and mean pore size. Comparison on hysteresis behavior between DPNR and ENR latex foam indicated that ENR latex foam exhibits higher hysteresis loss ratio compared to DPNR latex foam.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44991025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
NUMERICAL ANALYSIS OF HEAT TRANSFER AND CHEMICAL REACTION COUPLING IN THE RUBBER SEAL VULCANIZATION PROCESS 橡胶密封硫化过程中传热与化学反应耦合的数值分析
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2021-12-27 DOI: 10.5254/rct.21.78984
Zhaoxiang Zhang, X. Jia, Fei Guo, Xing Huang, Yuming Wang
{"title":"NUMERICAL ANALYSIS OF HEAT TRANSFER AND CHEMICAL REACTION COUPLING IN THE RUBBER SEAL VULCANIZATION PROCESS","authors":"Zhaoxiang Zhang, X. Jia, Fei Guo, Xing Huang, Yuming Wang","doi":"10.5254/rct.21.78984","DOIUrl":"https://doi.org/10.5254/rct.21.78984","url":null,"abstract":"\u0000 Vulcanization parameters significantly affect the performance of rubber seals and the energy savings of the manufacturing process, which require a relationship between process parameters and vulcanization characteristics. Based on the vulcanization kinetics of rubber seal materials, a transient thermochemical-coupled finite-element model of the vulcanization process was established and solved. Changes in thermal conductivity and specific heat capacity during vulcanization were considered in detail. The effects of operational and structural parameters, such as mold temperature, heating duration, and rubber seal shape, cross-sectional dimensions on vulcanization characteristics were investigated. Finally, feasible suggestions for the vulcanization production of rubber seals are discussed. The study is expected to design parameters and control the vulcanization process of rubber seals accurately.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48307736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
CHANGES IN THE MECHANICAL, MICRO-, AND NANO-STRUCTURAL PROPERTIES OF REINFORCED VULCANIZED NATURAL RUBBER COMPOUNDS: THEIR DEPENDENCE ON THE SiO2/CB RATIO 增强硫化天然橡胶化合物的力学、微观和纳米结构性能的变化:它们与SiO2/CB比的关系
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2021-11-17 DOI: 10.5254/rct.21.78991
A. Marzocca, Ana L. Rodríguez Garraza, Sebastián Anbinder, C. Macchi, A. Somoza
{"title":"CHANGES IN THE MECHANICAL, MICRO-, AND NANO-STRUCTURAL PROPERTIES OF REINFORCED VULCANIZED NATURAL RUBBER COMPOUNDS: THEIR DEPENDENCE ON THE SiO2/CB RATIO","authors":"A. Marzocca, Ana L. Rodríguez Garraza, Sebastián Anbinder, C. Macchi, A. Somoza","doi":"10.5254/rct.21.78991","DOIUrl":"https://doi.org/10.5254/rct.21.78991","url":null,"abstract":"\u0000 <jats:p />","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43455590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ASSESSMENT OF A NEW ISOTROPIC HYPERELASTIC CONSTITUTIVE MODEL FOR A RANGE OF RUBBERLIKE MATERIALS AND DEFORMATIONS 一类类橡胶材料及其变形的新型各向同性超弹性本构模型的评估
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2021-11-15 DOI: 10.5254/rct.21.78975
A. Anssari-Benam, A. Bucchi, C. Horgan, G. Saccomandi
{"title":"ASSESSMENT OF A NEW ISOTROPIC HYPERELASTIC CONSTITUTIVE MODEL FOR A RANGE OF RUBBERLIKE MATERIALS AND DEFORMATIONS","authors":"A. Anssari-Benam, A. Bucchi, C. Horgan, G. Saccomandi","doi":"10.5254/rct.21.78975","DOIUrl":"https://doi.org/10.5254/rct.21.78975","url":null,"abstract":"\u0000 The choice of an appropriate strain energy function W is key to accurate modeling and computational finite element analysis of the mechanical behavior of unfilled non-crystalizing rubberlike materials. Despite the existing variety of models, finding a suitable model that can capture many deformation modes of a rubber specimen with a single set of parameter values and satisfy the a priori mathematical and structural requirements remains a formidable task. Previous work proposed a new generalized neo-Hookean W (I1) function, showing a promising fitting capability and enjoying a structural basis. We now use two extended forms of that model that include an I1 term adjunct, W (I1, I2), for application to various boundary value problems commonly encountered in rubber mechanics applications. Specifically, two functional forms of the I2 invariant are considered: a linear function and a logarithmic function. The boundary value problems of interest include the in-plane uniaxial, equi-biaxial, and pure shear deformations and simple shear, inflation, and nonhomogeneous deformations such as torsion. By simultaneous fitting of each model to various deformation modes of rubber specimens, it is demonstrated that a single set of model parameter values favorably captures the mechanical response for all the considered deformations of each specimen. It is further shown that the model with a logarithmic I2 function provides better fits than the linear function. Given the functional simplicity of the considered W (I1, I2) models, the low number of model parameters (three in total), the structurally motivated bases of the models, and their capability to capture the mechanical response for various deformations of rubber specimens, the considered models are recommended as a powerful tool for practical applications and analysis of rubber elasticity.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45000918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
ISSUES WITH APPROACHES FOR SIMULATING AGING OF NUCLEAR POWER PLANT CABLE MATERIALS 核电站电缆材料老化模拟方法的问题
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2021-11-10 DOI: 10.5254/rct.21.78976
K. Gillen, M. Celina
{"title":"ISSUES WITH APPROACHES FOR SIMULATING AGING OF NUCLEAR POWER PLANT CABLE MATERIALS","authors":"K. Gillen, M. Celina","doi":"10.5254/rct.21.78976","DOIUrl":"https://doi.org/10.5254/rct.21.78976","url":null,"abstract":"\u0000 Over the past 20 y, the International Electrotechnical Commission and the International Atomic Energy Agency have published several Technical Documents describing recommended methods for carrying out accelerated radiation plus temperature aging of cable materials in nuclear power plants. These methods include the power law method, the time-dependent model, the dose to equivalent damage approach, and the simplified method approach. Because of the expected and observed changes in chemistry that occur as aging conditions transition radiation–temperature space, we highlight issues with the time-dependent and simplified method approaches by showing that they do not simulate the chemistry occurring under ambient conditions. The DED approach and a recent modification, the Matched Accelerated Conditions approach, can handle the changes in chemistry for many important cable materials and therefore offer more confident accelerated simulations. Problems with the power law method are then briefly described. Also discussed are the significant issues that occur when trying to simulate the aging of semicrystalline cable materials that show inverse-temperature effects. For these materials, degradation rates under radiation can increase as the aging temperature drops below ∼60 °C, in temperature regions where typical ambient aging conditions occur. A possible approach for dealing with such materials is suggested.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41294618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SYNTHESIS AND CHARACTERIZATION OF GRAPHENE SHEETS DECORATED WITH CARBON BLACK BY DIRECT PYROLYSIS OF A MOLASSES–CARBON BLACK MIXTURE AS A POTENTIAL VERSATILE FILLER FOR RUBBER 糖蜜-炭黑混合物直接热解制备炭黑修饰石墨烯片及其性能研究
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2021-10-21 DOI: 10.5254/rct.21.79928
A. Roy, Saptarshi Kar, Ranjan Ghosal, R. Mukhopadhyay, K. Naskar, A. Bhowmick
{"title":"SYNTHESIS AND CHARACTERIZATION OF GRAPHENE SHEETS DECORATED WITH CARBON BLACK BY DIRECT PYROLYSIS OF A MOLASSES–CARBON BLACK MIXTURE AS A POTENTIAL VERSATILE FILLER FOR RUBBER","authors":"A. Roy, Saptarshi Kar, Ranjan Ghosal, R. Mukhopadhyay, K. Naskar, A. Bhowmick","doi":"10.5254/rct.21.79928","DOIUrl":"https://doi.org/10.5254/rct.21.79928","url":null,"abstract":"\u0000 A mixture of molasses and carbon black was pyrolyzed in an inert atmosphere, which resulted in graphene of high quality, comprising of three to four layers on average with carbon black particles distributed over the graphene sheets. Molasses is the viscous dark colored slurry which is obtained at the last stage of refinement of sugar from sugarcane, in which sucrose is present as the major chemical component. Carbon black was also used as a substrate for the growth of graphene. The carbon black decorated graphene hybrid nanostructure was thoroughly characterized by different techniques and improved the failure properties of cured styrene butadiene rubber when incorporated into the rubber matrix. Bound rubber content increased by 50% with the hybrid filler compared to carbon black at 45 phr filler loading. The hybrid filler displayed 63% enhancement in the tensile strength at 2 phr filler loading and 86% increase at 45 phr filler loading, compared to the carbon black filled rubbers at the same loading. The vulcanizates containing the novel filler also exhibited improved abrasion resistance, ice traction, and wet traction and decreased rolling resistance compared to the carbon black filled systems. The new filler exhibited fair value of specific capacitance, 127 F/g when incorporated in an uncured rubber latex matrix. The hybrid filler synthesized, characterized, and studied thus can be classified as a versatile smart filler for rubber nanocomposites with a range of functionalities from mechanical reinforcement to electrochemical properties.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45421923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ENTIRE-REGION CONSTITUTIVE RELATION FOR TRELOAR'S DATA TRELOAR数据的全区域本构关系
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2021-10-15 DOI: 10.5254/rct.21.78993
L. Han, X. Peng, L. X. Li
{"title":"ENTIRE-REGION CONSTITUTIVE RELATION FOR TRELOAR'S DATA","authors":"L. Han, X. Peng, L. X. Li","doi":"10.5254/rct.21.78993","DOIUrl":"https://doi.org/10.5254/rct.21.78993","url":null,"abstract":"\u0000 Hyperelastic materials can experience a large deformation process. A constitutive relation suitable for an entire region from small, moderate, to large deformations is of great importance for practical applications such as fracture problems. Treloar's data are first investigated, and the tension curve is divided into three regimes: small-to-moderate regime, strain-hardening regime, and limiting-chain regime. Next, the modeling theory of hyperelastic materials is introduced, and the tensile behaviors of basic energy functions are analyzed for different deformation regimes. Finally, a successive procedure is suggested to establish an entire-region constitutive relation and then applied to Treloar's data. The present constitutive relation can maintain the initial shear modulus while the experimental data are satisfactorily predicted. The present procedure is simple and feasible and hence applicable to other hyperelastic materials when their entire-region constitutive relations are studied based on experimental data.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43048714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ADDITIVE MANUFACTURING AND VULCANIZATION OF CARBON BLACK–FILLED NATURAL RUBBER–BASED COMPONENTS 炭黑填充天然橡胶基组件的增材制造和硫化
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2021-10-15 DOI: 10.5254/rct.21.79906
Sebastian Leineweber, Lion Sundermann, Lars Bindszus, L. Overmeyer, B. Klie, Heike Wittek, U. Giese
{"title":"ADDITIVE MANUFACTURING AND VULCANIZATION OF CARBON BLACK–FILLED NATURAL RUBBER–BASED COMPONENTS","authors":"Sebastian Leineweber, Lion Sundermann, Lars Bindszus, L. Overmeyer, B. Klie, Heike Wittek, U. Giese","doi":"10.5254/rct.21.79906","DOIUrl":"https://doi.org/10.5254/rct.21.79906","url":null,"abstract":"\u0000 Additive manufacturing of thermoplastics or metals is a well-approved sustainable process for obtaining rapidly precise and individual technical components. Except for crosslinked silicone rubber or thermoplastic elastomers, there is no method of additive manufacturing of elastomers. Based on the development of the additive manufacturing of elastomers (AME) process, the material group of rubber-based cured elastomers may gain first access to the process field of three-dimensional (3D) printing. Printing and crosslinking of rubber is separated into two steps. In the first step, printing is realized by extrusion of the rubber by using a twin-screw extruder, which works according to the derived fused-filament-fabrication principle. In the second step, the component is vulcanized in a high-pressure hot-air autoclave. Because of the plastic flow behavior of non–crosslinked rubber materials, a thermoplastic shell is probably needed to maintain the geometry and position of the additively manufactured rubber. In this way, one layer of thermoplastic and one layer of rubber are printed alternatingly until the component is finished. Afterward, the manufactured binary component is placed in an autoclave to obtain the elastomer after vulcanization under a hot-air and high-pressure atmosphere. Then, the thermoplastic shell is removed from the elastomer and can subsequently be recycled. As compared with conventional thermoplastics, the high viscosity of rubber during processing and its instable shape after extrusion are challenging factors in the development of the AME. This contribution will show a modified 3D printer; explain the printing process from the designed component, via shell generation, to the vulcanized component; and show first printed components.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47403682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
ADVANCES IN TECHNIQUES AND APPLICATIONS OF RUBBER SURFACE GRAFTING MODIFICATION 橡胶表面接枝改性技术及应用进展
IF 1.5 4区 工程技术
Rubber Chemistry and Technology Pub Date : 2021-10-15 DOI: 10.5254/rct.21.79893
Xiaolong Lu, S. Cai, Ben Niu, Xian Li, Qin He, Xianru He
{"title":"ADVANCES IN TECHNIQUES AND APPLICATIONS OF RUBBER SURFACE GRAFTING MODIFICATION","authors":"Xiaolong Lu, S. Cai, Ben Niu, Xian Li, Qin He, Xianru He","doi":"10.5254/rct.21.79893","DOIUrl":"https://doi.org/10.5254/rct.21.79893","url":null,"abstract":"\u0000 To meet the requirement in the application of medical devices, composites, biomaterials, corrosion resistance, and selective adsorptions, rubber surface modification is usually indispensable. Grafting treatment is one of most significate treatment methods. In this paper, we focus on rubber surface grafting modification, including grafting techniques and applications. Different grafting methods—including monomer grafting polymerization and coupling reaction—are covered and compared briefly. The related applications of surface grafting modification techniques, such as improving compatibility of waste rubber as fillers, hydrophobicity and lipophilicity of sponge rubber for oil–water separation, biocompatibility of rubber in the medical field, and forming surface patterns, are demonstrated in detail. The new research directions of surface grafting techniques as well as main challenges in application are also discussed.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48083470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信