A. Gannoruwa, Yuanbing Zhou, Kenichiro Kosugi, Yoshimasa Yamamoto, S. Kawahara
{"title":"纳米金刚石纳米基体结构天然橡胶的能弹性和熵弹性起源","authors":"A. Gannoruwa, Yuanbing Zhou, Kenichiro Kosugi, Yoshimasa Yamamoto, S. Kawahara","doi":"10.5254/rct.21.79923","DOIUrl":null,"url":null,"abstract":"\n The origin of energetic elasticity in conjunction with the entropic elasticity for natural rubber with a nanodiamond nanomatrix structure was investigated in terms of bound rubber formed between nanodiamonds, based on the interaction between natural rubber and nanodiamonds inside the nanomatrix. The natural rubber with a nanodiamond nanomatrix structure was prepared by reacting nanodiamonds with deproteinized natural rubber in the presence of tert-butylhydroperoxide/tetraethylenepentamine at 30 °C in the latex stage followed by drying. Morphology of the products was observed by two-dimensional and three-dimensional transmission electron microscopies. The effect of bound rubber on the mechanical properties of the products was investigated by measurements of the dynamic mechanical properties and differential scanning calorimetry. The contribution of bound rubber was estimated by combining the Takayanagi equation and modified Guth–Gold equation. A significant increase in complex modulus was attributed to the effect of the bound rubber.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ORIGIN OF ENERGETIC ELASTICITY AND ENTROPIC ELASTICITY OF NATURAL RUBBER WITH NANODIAMOND NANOMATRIX STRUCTURE\",\"authors\":\"A. Gannoruwa, Yuanbing Zhou, Kenichiro Kosugi, Yoshimasa Yamamoto, S. Kawahara\",\"doi\":\"10.5254/rct.21.79923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The origin of energetic elasticity in conjunction with the entropic elasticity for natural rubber with a nanodiamond nanomatrix structure was investigated in terms of bound rubber formed between nanodiamonds, based on the interaction between natural rubber and nanodiamonds inside the nanomatrix. The natural rubber with a nanodiamond nanomatrix structure was prepared by reacting nanodiamonds with deproteinized natural rubber in the presence of tert-butylhydroperoxide/tetraethylenepentamine at 30 °C in the latex stage followed by drying. Morphology of the products was observed by two-dimensional and three-dimensional transmission electron microscopies. The effect of bound rubber on the mechanical properties of the products was investigated by measurements of the dynamic mechanical properties and differential scanning calorimetry. The contribution of bound rubber was estimated by combining the Takayanagi equation and modified Guth–Gold equation. A significant increase in complex modulus was attributed to the effect of the bound rubber.\",\"PeriodicalId\":21349,\"journal\":{\"name\":\"Rubber Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rubber Chemistry and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5254/rct.21.79923\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.21.79923","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
ORIGIN OF ENERGETIC ELASTICITY AND ENTROPIC ELASTICITY OF NATURAL RUBBER WITH NANODIAMOND NANOMATRIX STRUCTURE
The origin of energetic elasticity in conjunction with the entropic elasticity for natural rubber with a nanodiamond nanomatrix structure was investigated in terms of bound rubber formed between nanodiamonds, based on the interaction between natural rubber and nanodiamonds inside the nanomatrix. The natural rubber with a nanodiamond nanomatrix structure was prepared by reacting nanodiamonds with deproteinized natural rubber in the presence of tert-butylhydroperoxide/tetraethylenepentamine at 30 °C in the latex stage followed by drying. Morphology of the products was observed by two-dimensional and three-dimensional transmission electron microscopies. The effect of bound rubber on the mechanical properties of the products was investigated by measurements of the dynamic mechanical properties and differential scanning calorimetry. The contribution of bound rubber was estimated by combining the Takayanagi equation and modified Guth–Gold equation. A significant increase in complex modulus was attributed to the effect of the bound rubber.
期刊介绍:
The scope of RC&T covers:
-Chemistry and Properties-
Mechanics-
Materials Science-
Nanocomposites-
Biotechnology-
Rubber Recycling-
Green Technology-
Characterization and Simulation.
Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.