SYNERGISTIC MAGNETORHEOLOGICAL NR–NBR ELASTOMER BLEND WITH ELECTROLYTIC IRON PARTICLES

IF 1.2 4区 工程技术 Q4 POLYMER SCIENCE
Najib Alam, Vineet Kumar, S. Ryu, Tae Jo Koa, Dong‐Joo Lee, Jungwook Choi
{"title":"SYNERGISTIC MAGNETORHEOLOGICAL NR–NBR ELASTOMER BLEND WITH ELECTROLYTIC IRON PARTICLES","authors":"Najib Alam, Vineet Kumar, S. Ryu, Tae Jo Koa, Dong‐Joo Lee, Jungwook Choi","doi":"10.5254/rct.21.79977","DOIUrl":null,"url":null,"abstract":"\n This article presents the development of a new kind of magnetorheological elastomer blend made with natural rubber, acrylonitrile–butadiene rubber (NR-NBR), and electrolytic iron particles through solution mixing. The compressive stress and elastic modulus of the composites in the isotropic and anisotropic states of the filler were studied. A unique study of the filler distribution and filler orientation mechanism was proposed from the compressive properties and scanning electron microscopy. A strong improvement in the elastic modulus of the NR–NBR blend from isotropic to anisotropic change was achieved as compared with NR and NBR in single-rubber composites. The filler content in the anisotropic magnetorheological elastomers was optimized by measuring the field-dependent elastic modulus in the presence of an externally applied magnetic field. The blend rubber composites showed better sensitivity in the presence of a magnetic field than the NR and NBR composites did. The improvement might be due to the better filler orientation and strong adhesion of filler particles by the NR phase in the blend matrix. The new elastomer blends may have applications in active dampers, vibrational absorption, and automotive bushings.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.21.79977","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 4

Abstract

This article presents the development of a new kind of magnetorheological elastomer blend made with natural rubber, acrylonitrile–butadiene rubber (NR-NBR), and electrolytic iron particles through solution mixing. The compressive stress and elastic modulus of the composites in the isotropic and anisotropic states of the filler were studied. A unique study of the filler distribution and filler orientation mechanism was proposed from the compressive properties and scanning electron microscopy. A strong improvement in the elastic modulus of the NR–NBR blend from isotropic to anisotropic change was achieved as compared with NR and NBR in single-rubber composites. The filler content in the anisotropic magnetorheological elastomers was optimized by measuring the field-dependent elastic modulus in the presence of an externally applied magnetic field. The blend rubber composites showed better sensitivity in the presence of a magnetic field than the NR and NBR composites did. The improvement might be due to the better filler orientation and strong adhesion of filler particles by the NR phase in the blend matrix. The new elastomer blends may have applications in active dampers, vibrational absorption, and automotive bushings.
电解铁粒子协同磁流变NR-NBR弹性体
本文介绍了一种由天然橡胶、丙烯腈-丁二烯橡胶(NR-NBR)和电解铁颗粒通过溶液混合制成的新型磁流变弹性体共混物。研究了填料在各向同性和各向异性状态下复合材料的压缩应力和弹性模量。从压缩性能和扫描电子显微镜的角度,对填料的分布和取向机理进行了独特的研究。与单一橡胶复合材料中的NR和NBR相比,NR–NBR共混物的弹性模量从各向同性变化到各向异性得到了显著改善。各向异性磁流变弹性体中的填料含量通过在外部施加磁场的情况下测量场相关弹性模量来优化。共混橡胶复合材料在磁场存在下表现出比NR和NBR复合材料更好的灵敏度。这种改进可能是由于共混基质中NR相具有更好的填料取向和填料颗粒的强粘附性。新的弹性体混合物可能在主动阻尼器、振动吸收和汽车衬套中有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rubber Chemistry and Technology
Rubber Chemistry and Technology 工程技术-高分子科学
CiteScore
3.50
自引率
20.00%
发文量
21
审稿时长
3.6 months
期刊介绍: The scope of RC&T covers: -Chemistry and Properties- Mechanics- Materials Science- Nanocomposites- Biotechnology- Rubber Recycling- Green Technology- Characterization and Simulation. Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信