{"title":"用重量分析法表征橡胶聚合物的氢传输特性","authors":"J. Jung, In Gyoo Kim, S. K. Jeon, K. Chung","doi":"10.5254/rct.21.79880","DOIUrl":null,"url":null,"abstract":"\n We develop an ex situ technique to quantitatively analyze the transport properties of hydrogen gas dissolved under high pressure in rubbery polymers, such as cylindrical and spherical samples of nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM), and fluoroelastomer (FKM), which are potential sealing materials for hydrogen energy infrastructures. The technique consists of real-time gravimetric measurements during the desorption of hydrogen gas from samples using an electronic balance and a self-developed analysis program to determine the total charge (CH0), diffusivity (D), solubility (S) and permeability (P) of hydrogen. Dual absorption behavior is found for all three rubbers as the charging pressure increases. CH0 follows Henry's law at low pressures of up to ∼25 MPa, whereas the Langmuir model applies at high pressures. No significant pressure, size, or shape dependences are observed for D and P. The measured P values are consistent with those from the literature within the combined uncertainty evaluated. The effect of a carbon black filler mixed into rubber is discussed with respect to S and D. This method can be applicable as a standard test for the transport properties versus the pressure of various polymers irrespective of sample shape.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHARACTERIZING THE HYDROGEN TRANSPORT PROPERTIES OF RUBBERY POLYMERS BY GRAVIMETRIC ANALYSIS\",\"authors\":\"J. Jung, In Gyoo Kim, S. K. Jeon, K. Chung\",\"doi\":\"10.5254/rct.21.79880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We develop an ex situ technique to quantitatively analyze the transport properties of hydrogen gas dissolved under high pressure in rubbery polymers, such as cylindrical and spherical samples of nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM), and fluoroelastomer (FKM), which are potential sealing materials for hydrogen energy infrastructures. The technique consists of real-time gravimetric measurements during the desorption of hydrogen gas from samples using an electronic balance and a self-developed analysis program to determine the total charge (CH0), diffusivity (D), solubility (S) and permeability (P) of hydrogen. Dual absorption behavior is found for all three rubbers as the charging pressure increases. CH0 follows Henry's law at low pressures of up to ∼25 MPa, whereas the Langmuir model applies at high pressures. No significant pressure, size, or shape dependences are observed for D and P. The measured P values are consistent with those from the literature within the combined uncertainty evaluated. The effect of a carbon black filler mixed into rubber is discussed with respect to S and D. This method can be applicable as a standard test for the transport properties versus the pressure of various polymers irrespective of sample shape.\",\"PeriodicalId\":21349,\"journal\":{\"name\":\"Rubber Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rubber Chemistry and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5254/rct.21.79880\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.21.79880","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
CHARACTERIZING THE HYDROGEN TRANSPORT PROPERTIES OF RUBBERY POLYMERS BY GRAVIMETRIC ANALYSIS
We develop an ex situ technique to quantitatively analyze the transport properties of hydrogen gas dissolved under high pressure in rubbery polymers, such as cylindrical and spherical samples of nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM), and fluoroelastomer (FKM), which are potential sealing materials for hydrogen energy infrastructures. The technique consists of real-time gravimetric measurements during the desorption of hydrogen gas from samples using an electronic balance and a self-developed analysis program to determine the total charge (CH0), diffusivity (D), solubility (S) and permeability (P) of hydrogen. Dual absorption behavior is found for all three rubbers as the charging pressure increases. CH0 follows Henry's law at low pressures of up to ∼25 MPa, whereas the Langmuir model applies at high pressures. No significant pressure, size, or shape dependences are observed for D and P. The measured P values are consistent with those from the literature within the combined uncertainty evaluated. The effect of a carbon black filler mixed into rubber is discussed with respect to S and D. This method can be applicable as a standard test for the transport properties versus the pressure of various polymers irrespective of sample shape.
期刊介绍:
The scope of RC&T covers:
-Chemistry and Properties-
Mechanics-
Materials Science-
Nanocomposites-
Biotechnology-
Rubber Recycling-
Green Technology-
Characterization and Simulation.
Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.