{"title":"TRELOAR数据的全区域本构关系","authors":"L. Han, X. Peng, L. X. Li","doi":"10.5254/rct.21.78993","DOIUrl":null,"url":null,"abstract":"\n Hyperelastic materials can experience a large deformation process. A constitutive relation suitable for an entire region from small, moderate, to large deformations is of great importance for practical applications such as fracture problems. Treloar's data are first investigated, and the tension curve is divided into three regimes: small-to-moderate regime, strain-hardening regime, and limiting-chain regime. Next, the modeling theory of hyperelastic materials is introduced, and the tensile behaviors of basic energy functions are analyzed for different deformation regimes. Finally, a successive procedure is suggested to establish an entire-region constitutive relation and then applied to Treloar's data. The present constitutive relation can maintain the initial shear modulus while the experimental data are satisfactorily predicted. The present procedure is simple and feasible and hence applicable to other hyperelastic materials when their entire-region constitutive relations are studied based on experimental data.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ENTIRE-REGION CONSTITUTIVE RELATION FOR TRELOAR'S DATA\",\"authors\":\"L. Han, X. Peng, L. X. Li\",\"doi\":\"10.5254/rct.21.78993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hyperelastic materials can experience a large deformation process. A constitutive relation suitable for an entire region from small, moderate, to large deformations is of great importance for practical applications such as fracture problems. Treloar's data are first investigated, and the tension curve is divided into three regimes: small-to-moderate regime, strain-hardening regime, and limiting-chain regime. Next, the modeling theory of hyperelastic materials is introduced, and the tensile behaviors of basic energy functions are analyzed for different deformation regimes. Finally, a successive procedure is suggested to establish an entire-region constitutive relation and then applied to Treloar's data. The present constitutive relation can maintain the initial shear modulus while the experimental data are satisfactorily predicted. The present procedure is simple and feasible and hence applicable to other hyperelastic materials when their entire-region constitutive relations are studied based on experimental data.\",\"PeriodicalId\":21349,\"journal\":{\"name\":\"Rubber Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rubber Chemistry and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5254/rct.21.78993\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.21.78993","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
ENTIRE-REGION CONSTITUTIVE RELATION FOR TRELOAR'S DATA
Hyperelastic materials can experience a large deformation process. A constitutive relation suitable for an entire region from small, moderate, to large deformations is of great importance for practical applications such as fracture problems. Treloar's data are first investigated, and the tension curve is divided into three regimes: small-to-moderate regime, strain-hardening regime, and limiting-chain regime. Next, the modeling theory of hyperelastic materials is introduced, and the tensile behaviors of basic energy functions are analyzed for different deformation regimes. Finally, a successive procedure is suggested to establish an entire-region constitutive relation and then applied to Treloar's data. The present constitutive relation can maintain the initial shear modulus while the experimental data are satisfactorily predicted. The present procedure is simple and feasible and hence applicable to other hyperelastic materials when their entire-region constitutive relations are studied based on experimental data.
期刊介绍:
The scope of RC&T covers:
-Chemistry and Properties-
Mechanics-
Materials Science-
Nanocomposites-
Biotechnology-
Rubber Recycling-
Green Technology-
Characterization and Simulation.
Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.