Reviews of Geophysics最新文献

筛选
英文 中文
Thank You to Our 2021 Peer Reviewers 感谢我们2021年的同行评审
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-04-22 DOI: 10.1029/2022RG000779
Fabio Florindo, Annmarie G. Carlton, Paolo D’Odorico, Qingyun Duan, Jasper S. Halekas, Gesine Mollenhauer, Eelco J. Rohling, Robert G. Bingham, Emily E. Brodsky, Michel C. Crucifix, Andrew Gettelman, Alan Robock
{"title":"Thank You to Our 2021 Peer Reviewers","authors":"Fabio Florindo,&nbsp;Annmarie G. Carlton,&nbsp;Paolo D’Odorico,&nbsp;Qingyun Duan,&nbsp;Jasper S. Halekas,&nbsp;Gesine Mollenhauer,&nbsp;Eelco J. Rohling,&nbsp;Robert G. Bingham,&nbsp;Emily E. Brodsky,&nbsp;Michel C. Crucifix,&nbsp;Andrew Gettelman,&nbsp;Alan Robock","doi":"10.1029/2022RG000779","DOIUrl":"10.1029/2022RG000779","url":null,"abstract":"<p>Reviews of Geophysics is the top-rated journal in Geochemistry and Geophysics (ISI Web of Knowledge category) reflecting the many excellent contributions we received. It is an important milestone achieved with the reviewers' investment of time and effort. Their expertise ensures that the papers published in this journal meet the standards that the research community expects. We sincerely appreciate the time the reviewers spent reading and commenting on manuscripts, and we are very grateful for their willingness and readiness to serve in this role.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000779","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83229051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ice-Nucleating Particles That Impact Clouds and Climate: Observational and Modeling Research Needs 影响云和气候的冰核粒子:观测和模拟研究需求
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-04-21 DOI: 10.1029/2021RG000745
Susannah M. Burrows, Christina S. McCluskey, Gavin Cornwell, Isabelle Steinke, Kai Zhang, Bin Zhao, Maria Zawadowicz, Aishwarya Raman, Gourihar Kulkarni, Swarup China, Alla Zelenyuk, Paul J. DeMott
{"title":"Ice-Nucleating Particles That Impact Clouds and Climate: Observational and Modeling Research Needs","authors":"Susannah M. Burrows,&nbsp;Christina S. McCluskey,&nbsp;Gavin Cornwell,&nbsp;Isabelle Steinke,&nbsp;Kai Zhang,&nbsp;Bin Zhao,&nbsp;Maria Zawadowicz,&nbsp;Aishwarya Raman,&nbsp;Gourihar Kulkarni,&nbsp;Swarup China,&nbsp;Alla Zelenyuk,&nbsp;Paul J. DeMott","doi":"10.1029/2021RG000745","DOIUrl":"10.1029/2021RG000745","url":null,"abstract":"<p>Atmospheric ice-nucleating particles (INPs) play a critical role in cloud freezing processes, with important implications for precipitation formation and cloud radiative properties, and thus for weather and climate. Additionally, INP emissions respond to changes in the Earth System and climate, for example, desertification, agricultural practices, and fires, and therefore may introduce climate feedbacks that are still poorly understood. As knowledge of the nature and origins of INPs has advanced, regional and global weather, climate, and Earth system models have increasingly begun to link cloud ice processes to model-simulated aerosol abundance and types. While these recent advances are exciting, coupling cloud processes to simulated aerosol also makes cloud physics simulations increasingly susceptible to uncertainties in simulation of INPs, which are still poorly constrained by observations. Advancing the predictability of INP abundance with reasonable spatiotemporal resolution will require an increased focus on research that bridges the measurement and modeling communities. This review summarizes the current state of knowledge and identifies critical knowledge gaps from both observational and modeling perspectives. In particular, we emphasize needs in two key areas: (a) observational closure between aerosol and INP quantities and (b) skillful simulation of INPs within existing weather and climate models. We discuss the state of knowledge on various INP particle types and briefly discuss the challenges faced in understanding the cloud impacts of INPs with present-day models. Finally, we identify priority research directions for both observations and models to improve understanding of INPs and their interactions with the Earth System.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000745","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90583642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Global and Regional Trends and Drivers of Fire Under Climate Change 气候变化下全球和区域火灾趋势及驱动因素
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-04-11 DOI: 10.1029/2020RG000726
Matthew W. Jones, John T. Abatzoglou, Sander Veraverbeke, Niels Andela, Gitta Lasslop, Matthias Forkel, Adam J. P. Smith, Chantelle Burton, Richard A. Betts, Guido R. van der Werf, Stephen Sitch, Josep G. Canadell, Cristina Santín, Crystal Kolden, Stefan H. Doerr, Corinne Le Quéré
{"title":"Global and Regional Trends and Drivers of Fire Under Climate Change","authors":"Matthew W. Jones,&nbsp;John T. Abatzoglou,&nbsp;Sander Veraverbeke,&nbsp;Niels Andela,&nbsp;Gitta Lasslop,&nbsp;Matthias Forkel,&nbsp;Adam J. P. Smith,&nbsp;Chantelle Burton,&nbsp;Richard A. Betts,&nbsp;Guido R. van der Werf,&nbsp;Stephen Sitch,&nbsp;Josep G. Canadell,&nbsp;Cristina Santín,&nbsp;Crystal Kolden,&nbsp;Stefan H. Doerr,&nbsp;Corinne Le Quéré","doi":"10.1029/2020RG000726","DOIUrl":"https://doi.org/10.1029/2020RG000726","url":null,"abstract":"<p>Recent wildfire outbreaks around the world have prompted concern that climate change is increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. Here, we review current understanding of the impacts of climate change on fire weather (weather conditions conducive to the ignition and spread of wildfires) and the consequences for regional fire activity as mediated by a range of other bioclimatic factors (including vegetation biogeography, productivity and lightning) and human factors (including ignition, suppression, and land use). Through supplemental analyses, we present a stocktake of regional trends in fire weather and burned area (BA) during recent decades, and we examine how fire activity relates to its bioclimatic and human drivers. Fire weather controls the annual timing of fires in most world regions and also drives inter-annual variability in BA in the Mediterranean, the Pacific US and high latitude forests. Increases in the frequency and extremity of fire weather have been globally pervasive due to climate change during 1979–2019, meaning that landscapes are primed to burn more frequently. Correspondingly, increases in BA of ∼50% or higher have been seen in some extratropical forest ecoregions including in the Pacific US and high-latitude forests during 2001–2019, though interannual variability remains large in these regions. Nonetheless, other bioclimatic and human factors can override the relationship between BA and fire weather. For example, BA in savannahs relates more strongly to patterns of fuel production or to the fragmentation of naturally fire-prone landscapes by agriculture. Similarly, BA trends in tropical forests relate more strongly to deforestation rates and forest degradation than to changing fire weather. Overall, BA has reduced by 27% globally in the past two decades, due in large part to a decline in BA in African savannahs. According to climate models, the prevalence and extremity of fire weather has already emerged beyond its pre-industrial variability in the Mediterranean due to climate change, and emergence will become increasingly widespread at additional levels of warming. Moreover, several of the major wildfires experienced in recent years, including the Australian bushfires of 2019/2020, have occurred amidst fire weather conditions that were considerably more likely due to climate change. Current fire models incompletely reproduce the observed spatial patterns of BA based on their existing representations of the relationships between fire and its bioclimatic and human controls, and historical trends in BA also vary considerably across models. Advances in the observation of fire and understanding of its controlling factors are supporting the addition or optimization of a range of processes in models. Overall, climate change is exerting a pervasive upwards pressure on fire globally by increasing the frequency and intensity of fire weather, and this upwards pressu","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000726","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6172077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 101
How Well Do We Understand the Land-Ocean-Atmosphere Carbon Cycle? 我们对陆地-海洋-大气碳循环的了解有多深?
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-04-08 DOI: 10.1029/2021RG000736
David Crisp, Han Dolman, Toste Tanhua, Galen A. McKinley, Judith Hauck, Ana Bastos, Stephen Sitch, Simon Eggleston, Valentin Aich
{"title":"How Well Do We Understand the Land-Ocean-Atmosphere Carbon Cycle?","authors":"David Crisp,&nbsp;Han Dolman,&nbsp;Toste Tanhua,&nbsp;Galen A. McKinley,&nbsp;Judith Hauck,&nbsp;Ana Bastos,&nbsp;Stephen Sitch,&nbsp;Simon Eggleston,&nbsp;Valentin Aich","doi":"10.1029/2021RG000736","DOIUrl":"10.1029/2021RG000736","url":null,"abstract":"<p>Fossil fuel combustion, land use change and other human activities have increased the atmospheric carbon dioxide (CO<sub>2</sub>) abundance by about 50% since the beginning of the industrial age. The atmospheric CO<sub>2</sub> growth rates would have been much larger if natural sinks in the land biosphere and ocean had not removed over half of this anthropogenic CO<sub>2</sub>. As these CO<sub>2</sub> emissions grew, uptake by the ocean increased in response to increases in atmospheric CO<sub>2</sub> partial pressure (pCO<sub>2</sub>). On land, gross primary production also increased, but the dynamics of other key aspects of the land carbon cycle varied regionally. Over the past three decades, CO<sub>2</sub> uptake by intact tropical humid forests declined, but these changes are offset by increased uptake across mid- and high-latitudes. While there have been substantial improvements in our ability to study the carbon cycle, measurement and modeling gaps still limit our understanding of the processes driving its evolution. Continued ship-based observations combined with expanded deployments of autonomous platforms are needed to quantify ocean-atmosphere fluxes and interior ocean carbon storage on policy-relevant spatial and temporal scales. There is also an urgent need for more comprehensive measurements of stocks, fluxes and atmospheric CO<sub>2</sub> in humid tropical forests and across the Arctic and boreal regions, which are experiencing rapid change. Here, we review our understanding of the atmosphere, ocean, and land carbon cycles and their interactions, identify emerging measurement and modeling capabilities and gaps and the need for a sustainable, operational framework to ensure a scientific basis for carbon management.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000736","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80383004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
The Role of Quartz Cementation in the Seismic Cycle: A Critical Review 石英胶结作用在地震旋回中的重要作用
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-03-06 DOI: 10.1029/2021RG000768
Randolph T. Williams, ?ke Fagereng
{"title":"The Role of Quartz Cementation in the Seismic Cycle: A Critical Review","authors":"Randolph T. Williams,&nbsp;?ke Fagereng","doi":"10.1029/2021RG000768","DOIUrl":"https://doi.org/10.1029/2021RG000768","url":null,"abstract":"<p>Because quartz veins are common in fault zones exhumed from earthquake nucleation temperatures (150°C–350°C), quartz cementation may be an important mechanism of strength recovery between earthquakes. This interpretation requires that cementation occurs within a single interseismic period. We review slip-related processes that have been argued to allow rapid quartz precipitation in faults, including: advection of silica-saturated fluids, coseismic pore-fluid pressure drops, frictional heating, dissolution-precipitation creep, precipitation of amorphous phases, and variations in fluid and mineral-surface chemistry. We assess the rate and magnitude of quartz growth that may result from each of the examined mechanisms. We find limitations to the kinetics and mass balance of silica precipitation that emphasize two end-member regimes. First, the mechanisms we explore, given current kinetic constraints, cannot explain mesoscale fault-fracture vein networks developing, even incrementally, on interseismic timescales. On the other hand, some mechanisms appear capable, isolated or in combination, of cementing micrometer-to-millimeter thick principal slip surfaces in days to years. This does not explain extensive vein networks in fault damage zones, but allows the involvement of quartz cements in fault healing. These end-members lead us to hypothesize that high flux scenarios, although more important for voluminous hydrothermal mineralization, may be of subsidiary importance to local, diffusive mass transport in low fluid-flux faults when discussing the mechanical implications of quartz cements. A renewed emphasis on the controls on quartz cementation rates in fault zones will, however, be integral to developing a more complete understanding of strength recovery following earthquake rupture.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5728055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry 盐沼地表水和地下水相互作用及其对植物生态和海岸生物地球化学的影响
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-02-02 DOI: 10.1029/2021RG000740
Pei Xin, Alicia Wilson, Chengji Shen, Zhenming Ge, Kevan B. Moffett, Isaac R. Santos, Xiaogang Chen, Xinghua Xu, Yvonne Y. Y. Yau, Willard Moore, Ling Li, D. A. Barry
{"title":"Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry","authors":"Pei Xin,&nbsp;Alicia Wilson,&nbsp;Chengji Shen,&nbsp;Zhenming Ge,&nbsp;Kevan B. Moffett,&nbsp;Isaac R. Santos,&nbsp;Xiaogang Chen,&nbsp;Xinghua Xu,&nbsp;Yvonne Y. Y. Yau,&nbsp;Willard Moore,&nbsp;Ling Li,&nbsp;D. A. Barry","doi":"10.1029/2021RG000740","DOIUrl":"https://doi.org/10.1029/2021RG000740","url":null,"abstract":"<p>Salt marshes are highly productive intertidal wetlands providing important ecological services for maintaining coastal biodiversity, buffering against oceanic storms, and acting as efficient carbon sinks. However, about half of these wetlands have been lost globally due to human activities and climate change. Inundated periodically by tidal water, salt marshes are subjected to strong surface water and groundwater interactions, which affect marsh plant growth and biogeochemical exchange with coastal water. This paper reviews the state of knowledge and current approaches to quantifying marsh surface water and groundwater interactions with a focus on porewater flow and associated soil conditions in connection with plant zonation as well as carbon, nutrients, and greenhouse gas fluxes. Porewater flow and solute transport in salt marshes are primarily driven by tides with moderate regulation by rainfall, evapotranspiration and sea level rise. Tidal fluctuations play a key role in plant zonation through alteration of soil aeration and salt transport, and drive the export of significant fluxes of carbon and nutrients to coastal water. Despite recent progress, major knowledge gaps remain. Previous studies focused on flows in creek-perpendicular marsh sections and overlooked multi-scale 3D behaviors. Understanding of marsh ecological-hydrological links under combined influences of different forcing factors and boundary disturbances is lacking. Variations of surface water and groundwater temperatures affect porewater flow, soil conditions and biogeochemical exchanges, but the extent and underlying mechanisms remain unknown. We need to fill these knowledge gaps to advance understanding of salt marshes and thus enhance our ability to protect and restore them.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000740","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5929454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers 从流体流动到裂隙岩石的耦合过程:最新进展和新领域
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-02-01 DOI: 10.1029/2021RG000744
H. S. Viswanathan, J. Ajo-Franklin, J. T. Birkholzer, J. W. Carey, Y. Guglielmi, J. D. Hyman, S. Karra, L. J. Pyrak-Nolte, H. Rajaram, G. Srinivasan, D. M. Tartakovsky
{"title":"From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers","authors":"H. S. Viswanathan,&nbsp;J. Ajo-Franklin,&nbsp;J. T. Birkholzer,&nbsp;J. W. Carey,&nbsp;Y. Guglielmi,&nbsp;J. D. Hyman,&nbsp;S. Karra,&nbsp;L. J. Pyrak-Nolte,&nbsp;H. Rajaram,&nbsp;G. Srinivasan,&nbsp;D. M. Tartakovsky","doi":"10.1029/2021RG000744","DOIUrl":"https://doi.org/10.1029/2021RG000744","url":null,"abstract":"<p>Quantitative predictions of natural and induced phenomena in fractured rock is one of the great challenges in the Earth and Energy Sciences with far-reaching economic and environmental impacts. Fractures occupy a very small volume of a subsurface formation but often dominate fluid flow, solute transport and mechanical deformation behavior. They play a central role in CO<sub>2</sub> sequestration, nuclear waste disposal, hydrogen storage, geothermal energy production, nuclear nonproliferation, and hydrocarbon extraction. These applications require predictions of fracture-dependent quantities of interest such as CO<sub>2</sub> leakage rate, hydrocarbon production, radionuclide plume migration, and seismicity; to be useful, these predictions must account for uncertainty inherent in subsurface systems. Here, we review recent advances in fractured rock research covering field- and laboratory-scale experimentation, numerical simulations, and uncertainty quantification. We discuss how these have greatly improved the fundamental understanding of fractures and one's ability to predict flow and transport in fractured systems. Dedicated field sites provide quantitative measurements of fracture flow that can be used to identify dominant coupled processes and to validate models. Laboratory-scale experiments fill critical knowledge gaps by providing direct observations and measurements of fracture geometry and flow under controlled conditions that cannot be obtained in the field. Physics-based simulation of flow and transport provide a bridge in understanding between controlled simple laboratory experiments and the massively complex field-scale fracture systems. Finally, we review the use of machine learning-based emulators to rapidly investigate different fracture property scenarios and accelerate physics-based models by orders of magnitude to enable uncertainty quantification and near real-time analysis.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000744","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5647498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
Radiocarbon as a Dating Tool and Tracer in Paleoceanography 放射性碳作为古海洋学测年工具和示踪剂
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-01-12 DOI: 10.1029/2020RG000720
L. C. Skinner, E. Bard
{"title":"Radiocarbon as a Dating Tool and Tracer in Paleoceanography","authors":"L. C. Skinner,&nbsp;E. Bard","doi":"10.1029/2020RG000720","DOIUrl":"https://doi.org/10.1029/2020RG000720","url":null,"abstract":"<p>Radiocarbon is an extremely useful carbon cycle tracer and radiometric dating tool. Here, we review the main principles and challenges involved in the use of radiocarbon in paleoceanography. First, we present a conceptual framework in which there are three possible uses of a radiocarbon measurement: (a) to obtain a calendar age interval, or a fossil entity's age; (b) to obtain an estimate of a carbon reservoir's past radiocarbon activity; or (c) to compare the relative radiocarbon activities of two contemporary carbon reservoirs. We discuss the analysis of marine fossil material, the generation of an atmospheric reference curve, and the interpretation of marine radiocarbon “ventilation metrics” in relation to this reference curve. It is emphasized that marine radiocarbon integrates the influences of: changing radiocarbon production; air-sea gas exchange effects at the sea surface; transport times within the ocean interior; and the mixing of water parcels with different transit times from the sea surface, and different sea-surface sources. These controls are what make radiocarbon such a powerful paleoceanographic tracer, though the difficulty of disentangling them is what makes marine radiocarbon dating and tracer studies so challenging. We discuss the implementation of radiocarbon in numerical models, and explore the theory linking ocean-atmosphere partitioning of radiocarbon and CO<sub>2</sub>. Finally, we review existing records of marine radiocarbon variability over the last ∼25,000 years, which highlight the influence of ocean-atmosphere carbon exchange on past atmospheric CO<sub>2</sub> and climate, and point to emerging opportunities for resolving the global radiocarbon- and carbon budgets over the last glacial cycle.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000720","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5822561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Climate Changes and Their Elevational Patterns in the Mountains of the World 世界山区的气候变化及其海拔格局
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-01-11 DOI: 10.1029/2020RG000730
N. C. Pepin, E. Arnone, A. Gobiet, K. Haslinger, S. Kotlarski, C. Notarnicola, E. Palazzi, P. Seibert, S. Serafin, W. Sch?ner, S. Terzago, J. M. Thornton, M. Vuille, C. Adler
{"title":"Climate Changes and Their Elevational Patterns in the Mountains of the World","authors":"N. C. Pepin,&nbsp;E. Arnone,&nbsp;A. Gobiet,&nbsp;K. Haslinger,&nbsp;S. Kotlarski,&nbsp;C. Notarnicola,&nbsp;E. Palazzi,&nbsp;P. Seibert,&nbsp;S. Serafin,&nbsp;W. Sch?ner,&nbsp;S. Terzago,&nbsp;J. M. Thornton,&nbsp;M. Vuille,&nbsp;C. Adler","doi":"10.1029/2020RG000730","DOIUrl":"https://doi.org/10.1029/2020RG000730","url":null,"abstract":"<p>Quantifying rates of climate change in mountain regions is of considerable interest, not least because mountains are viewed as climate “hotspots” where change can anticipate or amplify what is occurring elsewhere. Accelerating mountain climate change has extensive environmental impacts, including depletion of snow/ice reserves, critical for the world's water supply. Whilst the concept of elevation-dependent warming (EDW), whereby warming rates are stratified by elevation, is widely accepted, no consistent EDW profile at the global scale has been identified. Past assessments have also neglected elevation-dependent changes in precipitation. In this comprehensive analysis, both in situ station temperature and precipitation data from mountain regions, and global gridded data sets (observations, reanalyses, and model hindcasts) are employed to examine the elevation dependency of temperature and precipitation changes since 1900. In situ observations in paired studies (using adjacent stations) show a tendency toward enhanced warming at higher elevations. However, when all mountain/lowland studies are pooled into two groups, no systematic difference in high versus low elevation group warming rates is found. Precipitation changes based on station data are inconsistent with no systematic contrast between mountain and lowland precipitation trends. Gridded data sets (CRU, GISTEMP, GPCC, ERA5, and CMIP5) show increased warming rates at higher elevations in some regions, but on a global scale there is no universal amplification of warming in mountains. Increases in mountain precipitation are weaker than for low elevations worldwide, meaning reduced elevation-dependency of precipitation, especially in midlatitudes. Agreement on elevation-dependent changes between gridded data sets is weak for temperature but stronger for precipitation.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000730","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5803229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 90
Realistic Forests and the Modeling of Forest-Atmosphere Exchange 真实森林与森林-大气交换模型
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2022-01-04 DOI: 10.1029/2021RG000746
E. J. Bannister, A. R. MacKenzie, X.-M. Cai
{"title":"Realistic Forests and the Modeling of Forest-Atmosphere Exchange","authors":"E. J. Bannister,&nbsp;A. R. MacKenzie,&nbsp;X.-M. Cai","doi":"10.1029/2021RG000746","DOIUrl":"https://doi.org/10.1029/2021RG000746","url":null,"abstract":"<p>Forests cover nearly a third of the Earth's land area and exchange mass, momentum, and energy with the atmosphere. Most studies of these exchanges, particularly using numerical models, consider forests whose structure has been heavily simplified. In many landscapes, these simplifications are unrealistic. Inhomogeneous landscapes and unsteady weather conditions generate fluid dynamical features that cause observations to be inaccurately interpreted, biased, or over-generalized. In Part I, we discuss experimental, theoretical, and numerical progress in the understanding of turbulent exchange over realistic forests. Scalar transport does not necessarily follow the flow in realistic settings, meaning scalar quantities are rarely at equilibrium around patchy forests, and significant scalar fluxes may form in the lee of forested hills. Gaps and patchiness generate significant spatial fluxes that current models and observations neglect. Atmospheric instability increases the distance over which fluxes adjust at forest edges. In deciduous forests, the effects of patchiness differ between seasons; counter intuitively, eddies reach further into leafy canopies (because they are rougher aerodynamically). Air parcel residence times are likely much lower in patchy forests than homogeneous ones, especially around edges. In Part II, we set out practical ways to make numerical models of forest-atmosphere more realistic, including by accounting for reconfiguration and realistic canopy structure and beginning to include more chemical and physical processes in turbulence resolving models. Future challenges include: (a) customizing numerical models to real study sites, (b) connecting space and time scales, and (c) incorporating a greater range of weather conditions in numerical models.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000746","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6065251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信