冰动力冰川演化模型研究进展

IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
H. Zekollari, M. Huss, D. Farinotti, S. Lhermitte
{"title":"冰动力冰川演化模型研究进展","authors":"H. Zekollari,&nbsp;M. Huss,&nbsp;D. Farinotti,&nbsp;S. Lhermitte","doi":"10.1029/2021RG000754","DOIUrl":null,"url":null,"abstract":"<p>Glaciers play a crucial role in the Earth System: they are important water suppliers to lower-lying areas during hot and dry periods, and they are major contributors to the observed present-day sea-level rise. Glaciers can also act as a source of natural hazards and have a major touristic value. Given their societal importance, there is large scientific interest in better understanding and accurately simulating the temporal evolution of glaciers, both in the past and in the future. Here, we give an overview of the state of the art of simulating the evolution of individual glaciers over decadal to centennial time scales with ice-dynamical models. We hereby highlight recent advances in the field and emphasize how these go hand-in-hand with an increasing availability of on-site and remotely sensed observations. We also focus on the gap between simplified studies that use parameterizations, typically used for regional and global projections, and detailed assessments for individual glaciers, and explain how recent advances now allow including ice dynamics when modeling glaciers at larger spatial scales. Finally, we provide concrete recommendations concerning the steps and factors to be considered when modeling the evolution of glaciers. We suggest paying particular attention to the model initialization, analyzing how related uncertainties in model input influence the modeled glacier evolution and strongly recommend evaluating the simulated glacier evolution against independent data.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000754","citationCount":"8","resultStr":"{\"title\":\"Ice-Dynamical Glacier Evolution Modeling—A Review\",\"authors\":\"H. Zekollari,&nbsp;M. Huss,&nbsp;D. Farinotti,&nbsp;S. Lhermitte\",\"doi\":\"10.1029/2021RG000754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glaciers play a crucial role in the Earth System: they are important water suppliers to lower-lying areas during hot and dry periods, and they are major contributors to the observed present-day sea-level rise. Glaciers can also act as a source of natural hazards and have a major touristic value. Given their societal importance, there is large scientific interest in better understanding and accurately simulating the temporal evolution of glaciers, both in the past and in the future. Here, we give an overview of the state of the art of simulating the evolution of individual glaciers over decadal to centennial time scales with ice-dynamical models. We hereby highlight recent advances in the field and emphasize how these go hand-in-hand with an increasing availability of on-site and remotely sensed observations. We also focus on the gap between simplified studies that use parameterizations, typically used for regional and global projections, and detailed assessments for individual glaciers, and explain how recent advances now allow including ice dynamics when modeling glaciers at larger spatial scales. Finally, we provide concrete recommendations concerning the steps and factors to be considered when modeling the evolution of glaciers. We suggest paying particular attention to the model initialization, analyzing how related uncertainties in model input influence the modeled glacier evolution and strongly recommend evaluating the simulated glacier evolution against independent data.</p>\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"60 2\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2022-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000754\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2021RG000754\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2021RG000754","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 8

摘要

冰川在地球系统中起着至关重要的作用:在炎热和干旱时期,它们是低洼地区的重要供水量,也是目前观测到的海平面上升的主要原因。冰川也可能成为自然灾害的来源,并具有重要的旅游价值。鉴于它们的社会重要性,更好地理解和准确地模拟冰川在过去和未来的时间演变具有很大的科学兴趣。在这里,我们概述了用冰动力模型模拟单个冰川在十年至百年时间尺度上的演变的最新进展。我们在此强调该领域的最新进展,并强调这些进展如何与越来越多的现场和遥感观测相结合。我们还关注了使用参数化的简化研究(通常用于区域和全球预测)与单个冰川的详细评估之间的差距,并解释了最近的进展如何允许在更大的空间尺度上模拟冰川时包括冰动力学。最后,我们就冰川演化模拟应考虑的步骤和因素提出了具体建议。我们建议特别关注模型初始化,分析模型输入中的相关不确定性如何影响模拟的冰川演化,并强烈建议根据独立数据评估模拟的冰川演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ice-Dynamical Glacier Evolution Modeling—A Review

Ice-Dynamical Glacier Evolution Modeling—A Review

Glaciers play a crucial role in the Earth System: they are important water suppliers to lower-lying areas during hot and dry periods, and they are major contributors to the observed present-day sea-level rise. Glaciers can also act as a source of natural hazards and have a major touristic value. Given their societal importance, there is large scientific interest in better understanding and accurately simulating the temporal evolution of glaciers, both in the past and in the future. Here, we give an overview of the state of the art of simulating the evolution of individual glaciers over decadal to centennial time scales with ice-dynamical models. We hereby highlight recent advances in the field and emphasize how these go hand-in-hand with an increasing availability of on-site and remotely sensed observations. We also focus on the gap between simplified studies that use parameterizations, typically used for regional and global projections, and detailed assessments for individual glaciers, and explain how recent advances now allow including ice dynamics when modeling glaciers at larger spatial scales. Finally, we provide concrete recommendations concerning the steps and factors to be considered when modeling the evolution of glaciers. We suggest paying particular attention to the model initialization, analyzing how related uncertainties in model input influence the modeled glacier evolution and strongly recommend evaluating the simulated glacier evolution against independent data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews of Geophysics
Reviews of Geophysics 地学-地球化学与地球物理
CiteScore
50.30
自引率
0.80%
发文量
28
审稿时长
12 months
期刊介绍: Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信