Research in microbiology最新文献

筛选
英文 中文
Evolutionary trends indicate a coherent organization of sap operons. 进化趋势表明,树液操作子的组织是一致的。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-11-01 Epub Date: 2024-07-06 DOI: 10.1016/j.resmic.2024.104228
Pratik Dasgupta, Kavya Vinil, Shankar Prasad Kanaujia
{"title":"Evolutionary trends indicate a coherent organization of sap operons.","authors":"Pratik Dasgupta, Kavya Vinil, Shankar Prasad Kanaujia","doi":"10.1016/j.resmic.2024.104228","DOIUrl":"10.1016/j.resmic.2024.104228","url":null,"abstract":"<p><p>Human hosts possess a complex network of immune responses against microbial pathogens. The production of antimicrobial peptides (AMPs), which target the pathogen cell membranes and inhibit them from inhabiting the hosts, is one such mechanism. However, pathogens have evolved systems that encounter these host-produced AMPs. The Sap (sensitivity to antimicrobial peptides) transporter uptakes AMPs inside the microbial cell and proteolytically degrades them. The Sap transporters comprise five subunits encoded by genes in an operon. Despite its ubiquitous nature, its subunits are not found to be in tandem with many organisms. In this study, a total of 421 Sap transporters were analyzed for their operonic arrangement. Out of 421, a total of 352 operons were found to be in consensus arrangement, while the remaining 69 show a varying arrangement of genes. The analysis of the intergenic distance between the subunits of the sap operon suggests a signature pattern with sapAB (-4), sapBC (-14), sapCD (-1), and sapDF (-4 to 1). An evolutionary analysis of these operons favors the consensus arrangement of the Sap transporter systems, substantiating its prevalence in most of the Gram-negative pathogens. Overall, this study provides insight into bacterial evolution, favoring the maintenance of the genetic organization of essential pathogenicity factors.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthetic capabilities of Antarctic yeast Sporobolomyces roseus AL103: Temperature influence on intracellular metabolites and characterization of the exopolysaccharide. 南极酵母 Sporobolomyces roseus AL103 的生物合成能力:温度对胞内代谢物的影响和外多糖的特征。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-11-01 Epub Date: 2024-10-11 DOI: 10.1016/j.resmic.2024.104247
Snezhana Rusinova-Videva, Manol Ognyanov, Kalina Alipieva, Stefka Nachkova, Dessislava Gerginova, Ani Petrova, Maria Marudova, Sofia Milenkova, Tsvetelina Paunova-Krasteva, Dragomir Mateev
{"title":"Biosynthetic capabilities of Antarctic yeast Sporobolomyces roseus AL<sub>103</sub>: Temperature influence on intracellular metabolites and characterization of the exopolysaccharide.","authors":"Snezhana Rusinova-Videva, Manol Ognyanov, Kalina Alipieva, Stefka Nachkova, Dessislava Gerginova, Ani Petrova, Maria Marudova, Sofia Milenkova, Tsvetelina Paunova-Krasteva, Dragomir Mateev","doi":"10.1016/j.resmic.2024.104247","DOIUrl":"10.1016/j.resmic.2024.104247","url":null,"abstract":"<p><p>The purpose of the study was to investigate the biosynthetic properties of the Antarctic yeast strain Sporobolomyces roseus AL<sub>103</sub> in response to temperature changes, to perform intracellular metabolic profiling, and to reveal the chemical and functional characteristics of the synthesized exopolysaccharide (EPS). The results show that the yeast strain needed a shorter time to reach a stationary phase at 22 °C contrary to that of 5 °C. An NMR analysis revealed differences in metabolic profiles of amino acids, glucose, trehalose, glycerol, uridine, etc. EPS (2.9 g/L) was characterized by high-molecular-weight with total carbohydrate, uronic acids, and protein content of 66 %, 10.5 %, and 2.5 %, respectively. Mannose (74 mol%) and galactose (19 mol%) were the major constituents. The FT-IR data suggested the presence of β-(1-4)-mannan. DSC thermogram, WVTR, mechanical properties, and moisture sorption of the EPS film showed thermal stability up to 220 °C and hydrophilic behavior. The newly obtained polymer film was studied for the first time and the data showed possibilities for its successful application as a film-forming material in the preparation of packaging materials. In conclusion, the temperature influenced the metabolic profile of the Antarctic yeast producer. The biotechnological process could be directed to obtain the target intracellular or extracellular metabolites.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid lysination by MprF contributes to hemolytic pigment retention in group B Streptococcus. MprF 的脂质裂解作用有助于 B 群链球菌中溶血性色素的保留。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-11-01 Epub Date: 2024-08-26 DOI: 10.1016/j.resmic.2024.104231
Elise Caliot, Arnaud Firon, Audrey Solgadi, Patrick Trieu-Cuot, Shaynoor Dramsi
{"title":"Lipid lysination by MprF contributes to hemolytic pigment retention in group B Streptococcus.","authors":"Elise Caliot, Arnaud Firon, Audrey Solgadi, Patrick Trieu-Cuot, Shaynoor Dramsi","doi":"10.1016/j.resmic.2024.104231","DOIUrl":"10.1016/j.resmic.2024.104231","url":null,"abstract":"<p><p>Group B Streptococcus (GBS) is the leading cause of neonatal sepsis and meningitis. A major virulence factor is a pigmented beta-haemolytic/cyto-lysin (β-h/c) toxin with an ornithine rhamnolipid structure. We initially observed that absence of MprF enzyme altered pigmentation and haemolytic activity in GBS. Next, we showed that MprF-dependent lipid lysination contributes to the retention of the ornithine rhamnolipid within GBS membrane. Furthermore, cationic lipidation by MprF altered membrane properties contributing to resistance to the cyclic lipopeptide daptomycin and to acidic pH. This study highlights the importance of cationic lipids in cell envelope homeostasis and in modulating β-h/c activity.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of core genome multi-locus sequence typing schemes for population structure analyses of Nocardia species. 构建用于诺卡氏菌种群结构分析的核心基因组多焦点序列分型方案。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-11-01 Epub Date: 2024-10-09 DOI: 10.1016/j.resmic.2024.104246
Yizhak Hershko, Matan Slutzkin, Daniel Barkan, Amos Adler
{"title":"Construction of core genome multi-locus sequence typing schemes for population structure analyses of Nocardia species.","authors":"Yizhak Hershko, Matan Slutzkin, Daniel Barkan, Amos Adler","doi":"10.1016/j.resmic.2024.104246","DOIUrl":"10.1016/j.resmic.2024.104246","url":null,"abstract":"<p><p>Nocardia, a member of the Actinobacteria phylum, populates diverse habitats globally, with certain species being the cause of various clinical infections in humans. There is paucity of data regarding the population structure of this genus and of established genomic-based phylogenetic methods. We examined the whole genome sequences of 193 isolates spanning five major pathogenic Nocardia species sourced from public databases, encompassing diverse geographic regions. Using the chewBBACA pipeline, a species-specific core genome multilocus sequence typing (cgMLST) schema was created for N. cyriacigeorgica, N. farcinica, N. brasiliensis, N. wallacei, and N. abscessus. Additional genomic features that were examined included virulence factor (VF) profile, total length and open-reading frame count, the core genome length and core gene count, and GC content. Our findings indicated that: (i) N. brasiliensis diverges significantly from the other four species, underscoring its distinct evolutionary trajectory; (ii) the population structures of all species were polyclonal, with phylogenetic clustering occurring in the minority of isolates; (iii) clonal complexes were largely restricted to specific geographical locations, rather than demonstrating a global distribution, and (iv) initial evidence suggests no direct common-source transmission amongst the studied strains. Our study establishes a comprehensive genome-based phylogenetic methodology for population structure of Nocardia species.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of gamma irradiation on the proteogenome of cold-acclimated Kocuria rhizophila PT10. 伽马辐照对寒冷气候条件下根瘤梭菌 PT10 蛋白质基因组的影响
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-11-01 Epub Date: 2024-07-31 DOI: 10.1016/j.resmic.2024.104230
Sihem Guesmi, Kais Ghedira, Petar Pujic, Afef Najjari, Guylaine Miotello, Ameur Cherif, Issay Narumi, Jean Armengaud, Philippe Normand, Haïtham Sghaier
{"title":"Effect of gamma irradiation on the proteogenome of cold-acclimated Kocuria rhizophila PT10.","authors":"Sihem Guesmi, Kais Ghedira, Petar Pujic, Afef Najjari, Guylaine Miotello, Ameur Cherif, Issay Narumi, Jean Armengaud, Philippe Normand, Haïtham Sghaier","doi":"10.1016/j.resmic.2024.104230","DOIUrl":"10.1016/j.resmic.2024.104230","url":null,"abstract":"<p><p>The effects of ionizing radiation (IR) on the protein dynamics of cold-stressed cells of a radioresistant actinobacterium, Kocuria rhizophila PT10, isolated from the rhizosphere of the desert plant Panicum turgidum were investigated using a shotgun methodology based on nanoflow liquid chromatography coupled to tandem mass spectrometry. Overall, 1487 proteins were certified, and their abundances were compared between the irradiated condition and control. IR of cold-acclimated PT10 triggered the over-abundance of proteins involved in (1) a strong transcriptional regulation, (2) amidation of peptidoglycan and preservation of cell envelope integrity, (3) detoxification of reactive electrophiles and regulation of the redox status of proteins, (4) base excision repair and prevention of mutagenesis and (5) the tricarboxylic acid (TCA) cycle and production of fatty acids. Also, one of the more significant findings to emerge from this study is the SOS response of stressed PT10. Moreover, a comparison of top hits radio-modulated proteins of cold-acclimated PT10 with proteomics data from gamma-irradiated Deinococcus deserti showed that stressed PT10 has a specific response characterised by a high over-abundance of NemA, GatD, and UdgB.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BSC2 modulates AmB resistance via the maintenance of intracellular sodium/potassium ion homeostasis in Saccharomyces cerevisiae. BSC2 通过维持酿酒酵母细胞内钠/钾离子平衡调节对 AmB 的抗性
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-11-01 Epub Date: 2024-09-07 DOI: 10.1016/j.resmic.2024.104245
Zhiwei Huang, Fulong Xiao, Qiao Wang, Xiaojuan Zhang, Yuhu Shen, Yunxia Deng, Ping Shi
{"title":"BSC2 modulates AmB resistance via the maintenance of intracellular sodium/potassium ion homeostasis in Saccharomyces cerevisiae.","authors":"Zhiwei Huang, Fulong Xiao, Qiao Wang, Xiaojuan Zhang, Yuhu Shen, Yunxia Deng, Ping Shi","doi":"10.1016/j.resmic.2024.104245","DOIUrl":"10.1016/j.resmic.2024.104245","url":null,"abstract":"<p><p>Previous studies on BSC2 have shown that it enhances yeast cell resistance to AmB via antioxidation and induces multidrug resistance by contributing to biofilm formation. Herein, we found that BSC2 overexpression could reverse the sensitivity of pmp3Δ to AmB and help the tested strains restore the intracellular sodium/potassium balance under exposure to AmB. Meanwhile, overexpression of the chitin gene CHS2 could simulate BSC2 to reverse the sensitivity of pmp3Δ and nha1Δ to high salt or AmB. However, BSC2 overexpression in flo11Δ failed to induce AmB resistance, form biofilms, and affect cell wall biogenesis, while CHS2 overexpression compensated the resistance of flo11Δ to AmB. Additionally, BSC2 levels were positively correlated with maintaining cell membrane integrity under exposure to AmB, CAS, or a combination of both. BSC2 overexpression in nha1Δ exhibited a similar function of CHS2, which can compensate for the sensitivity of the mutant to high salt. Altogether, the results demonstrate for the first time that BSC2 may promote ion equilibrium by strengthening cell walls and inhibiting membrane damage in a FLO path-dependent manner, thus enhancing the resistance of yeast cells to AmB. This study also reveals the possible mechanism of antifungal drugs CAS and AmB combined to inhibit fungi.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endophyte mediated biocontrol mechanisms of phytopathogens in agriculture. 内生菌介导的农业植物病原体生物控制机制。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-11-01 Epub Date: 2024-07-09 DOI: 10.1016/j.resmic.2024.104229
Muhammad Fazle Rabbee, Md Sarafat Ali, Md Nurul Islam, Mohammed M Rahman, Md Mohidul Hasan, Kwang-Hyun Baek
{"title":"Endophyte mediated biocontrol mechanisms of phytopathogens in agriculture.","authors":"Muhammad Fazle Rabbee, Md Sarafat Ali, Md Nurul Islam, Mohammed M Rahman, Md Mohidul Hasan, Kwang-Hyun Baek","doi":"10.1016/j.resmic.2024.104229","DOIUrl":"10.1016/j.resmic.2024.104229","url":null,"abstract":"<p><p>The global human population is growing and demand for food is increasing. Global agriculture faces numerous challenges, including excessive application of synthetic pesticides, emergence of herbicide-and pesticide-resistant pathogenic microbes, and more frequent natural disasters associated with global warming. Searches for valuable endophytes have increased, with the aim of making agriculture more sustainable and environmentally friendly. Endophytic microbes are known to have a variety of beneficial effects on plants. They can effectively transfer nutrients from the soil into plants, promote plant growth and development, increase disease resistance, increase stress tolerance, prevent herbivore feeding, reduce the virulence of pathogens, and inhibit the growth of rival plant species. Endophytic microbes can considerably minimize the need for agrochemicals, such as fertilizers, fungicides, bactericides, insecticides, and herbicides in the cultivation of crop plants. This review summarizes current knowledge on the roles of endophytes focusing on their mechanisms of disease control against phytopathogens through the secretion of antimicrobial substances and volatile organic compounds, and the induction of systemic resistance in plants. Additionally, the beneficial roles of these endophytes and their metabolites in the control of postharvest diseases in plants have been summarized.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterisation of a new virulent phage isolated from Hainan Island with potential against multidrug-resistant Pseudomonas aeruginosa infections. 从海南岛分离出的一种新型毒性噬菌体的特征,该噬菌体具有抗耐多药型铜绿假单胞菌感染的潜力。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-10-29 DOI: 10.1016/j.resmic.2024.104250
Anyang Li, Chen Chen, Yanmei Li, Yanshuang Wang, Xuemiao Li, Qiao Zhu, Yue Zhang, Shen Tian, Qianfeng Xia
{"title":"Characterisation of a new virulent phage isolated from Hainan Island with potential against multidrug-resistant Pseudomonas aeruginosa infections.","authors":"Anyang Li, Chen Chen, Yanmei Li, Yanshuang Wang, Xuemiao Li, Qiao Zhu, Yue Zhang, Shen Tian, Qianfeng Xia","doi":"10.1016/j.resmic.2024.104250","DOIUrl":"10.1016/j.resmic.2024.104250","url":null,"abstract":"<p><p>Multidrug-resistant (MDR) Pseudomonas aeruginosa is a serious life-threatening pathogen. The rise in P. aeruginosa resistance rates has renewed interest in phages as an alternative therapeutic approach for treating bacterial infections. In this study, we investigated the characteristics of the first Pseudomonas phage, vB_PaP_HN01, isolated from Hainan, the only tropical island in China. The lytic rate of this phage against P. aeruginosa reached 64.3 % (27/42). Under the optimal multiplicity of infection (MOI) of 0.1, more than 90 % of phage particles absorb onto the host cell within 10 min, with an eclipse period of around 15 min, and a high titer phage production (10<sup>11</sup> PFU/ml) within 90 min was demonstrated. vB_PaP_HN01 maintains a robust titer after 1 h exposure to pH values and temperatures (up to 50 °C). Genome annotation revealed that vB_PaP_HN01 did not contain drug-resistance or lysogeny-associated genes. It can effectively inhibit the formation of biofilms of MDR P. aeruginosa and eliminated aggressive biofilms (removal rate about 70 %). In the in vivo infection models, it was demonstrated that the survival rate and lifespan of Galleria mellonella larvae were increased alongside the injection of vB_PaP_HN01. These data revealed the potential of vB_PaP_HN01 against P. aeruginosa in clinic.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Both GacS-regulated lipopeptides and the type three secretion system contribute to Pseudomonas cichorii induced necrosis in lettuce and chicory. GacS调控的脂肽和三型分泌系统都有助于cichorii假单胞菌诱导莴苣和菊苣坏死。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-10-22 DOI: 10.1016/j.resmic.2024.104249
Chien-Jui Huang, Ellen Pauwelyn, Marc Ongena, Peter Bleyaert, Monica Höfte
{"title":"Both GacS-regulated lipopeptides and the type three secretion system contribute to Pseudomonas cichorii induced necrosis in lettuce and chicory.","authors":"Chien-Jui Huang, Ellen Pauwelyn, Marc Ongena, Peter Bleyaert, Monica Höfte","doi":"10.1016/j.resmic.2024.104249","DOIUrl":"https://doi.org/10.1016/j.resmic.2024.104249","url":null,"abstract":"<p><p>Pseudomonas cichorii SF1-54, the causal agent of lettuce midrib rot disease, produces lipopeptides cichofactins and cichopeptins which are important virulence factors. The GacS/GacA two-component system is well known to regulate production of lipopeptides in pseudomonads. Additionally, the functions of the type three secretion system (T3SS) in P. cichorii-plant interactions are not clarified. In this study, we investigated the role of the GacS-regulated lipopeptides and the T3SS in pathogenicity of P. cichorii SF1-54 on two host plants, chicory and lettuce, by constructing mutants in hrpL, which encodes the key sigma factor to control T3SS expression, and gacS. Compared with the wildtype, the hrpL mutant produced lipopeptides at a similar level but the gacS mutant was strongly impaired in lipopeptide production. The mutant deficient in hrpL did not significantly differ from the wildtype in virulence on chicory and lettuce. The gacS mutant exhibited significantly less symptoms on both host plants compared to the wildtype and the hrpL mutant. Intriguingly, the gacS hrpL-double mutant no longer produced lipopeptides, lost virulence and showed impaired colonization on chicory, but was still weakly virulent on lettuce. Thus, contribution of both the GacS-regulated lipopeptides and T3SS to virulence of P. cichorii SF1-54 is host plant dependent.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic complexities and heterogeneity in quorum sensing signaling molecules in bacteria isolated from black band disease in a Caribbean coral. 从加勒比珊瑚黑带病中分离出的细菌的代谢复杂性和法定量感应信号分子的异质性。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-10-21 DOI: 10.1016/j.resmic.2024.104248
Laura Ripe-Jaime, Erika Díaz, Ángel G Franco, Catherine Keim, Daniela Burgos, Valeria Pizarro, Luis F Cadavid, Anny Cárdenas, Catalina Arévalo-Ferro
{"title":"Metabolic complexities and heterogeneity in quorum sensing signaling molecules in bacteria isolated from black band disease in a Caribbean coral.","authors":"Laura Ripe-Jaime, Erika Díaz, Ángel G Franco, Catherine Keim, Daniela Burgos, Valeria Pizarro, Luis F Cadavid, Anny Cárdenas, Catalina Arévalo-Ferro","doi":"10.1016/j.resmic.2024.104248","DOIUrl":"https://doi.org/10.1016/j.resmic.2024.104248","url":null,"abstract":"<p><p>Coral diseases contribute to the worldwide loss of coral reefs, with the Black Band Disease (BBD) being a prominent example. BBD is an infectious condition with lesions with a pigmented mat composed of cyanobacteria, sulphate-reducing, sulphide-oxidizing, and heterotrophic bacteria. We compared the heterotrophic bacterial communities of healthy and BBD-affected colonies of the Caribbean coral Orbicella faveolata using culture-dependent and -independent techniques. Twenty and 23 bacterial isolates were identified from healthy and diseased tissues, respectively, which differed in their capacities to metabolize carbohydrates and citrate, either anaerobically or aerobically. They also differed in their quorum-sensing (QS) activity, as QS signaling molecules were found exclusively, and QS-inhibition was found primarily, in isolates from diseased tissues. Screening of bacterial diversity by 16SrDNA metabarcoding showed that members of the bacterial genera Muricauda and Maritimimonas were dominant in healthy tissues whereas members of the cyanobacterial genus Roseofilum were dominant in diseased tissues. These results suggest that bacterial dysbiosis can be linked with altered bacterial communication, likely leading to diachrony and imbalance that may participate in the progression of BBD. Investigating physiological traits and QS-based communication offers insights into the onset and progression of coral infections, paving the way for novel strategies to mitigate their impact.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信