Research in microbiology最新文献

筛选
英文 中文
BSC2 modulates AmB resistance via the maintenance of intracellular sodium/potassium ion homeostasis in Saccharomyces cerevisiae. BSC2 通过维持酿酒酵母细胞内钠/钾离子平衡调节对 AmB 的抗性
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-09-07 DOI: 10.1016/j.resmic.2024.104245
Zhiwei Huang, Fulong Xiao, Qiao Wang, Xiaojuan Zhang, Yuhu Shen, Yunxia Deng, Ping Shi
{"title":"BSC2 modulates AmB resistance via the maintenance of intracellular sodium/potassium ion homeostasis in Saccharomyces cerevisiae.","authors":"Zhiwei Huang, Fulong Xiao, Qiao Wang, Xiaojuan Zhang, Yuhu Shen, Yunxia Deng, Ping Shi","doi":"10.1016/j.resmic.2024.104245","DOIUrl":"10.1016/j.resmic.2024.104245","url":null,"abstract":"<p><p>Previous studies on BSC2 have shown that it enhances yeast cell resistance to AmB via antioxidation and induces multidrug resistance by contributing to biofilm formation. Herein, we found that BSC2 overexpression could reverse the sensitivity of pmp3Δ to AmB and help the tested strains restore the intracellular sodium/potassium balance under exposure to AmB. Meanwhile, overexpression of the chitin gene CHS2 could simulate BSC2 to reverse the sensitivity of pmp3Δ and nha1Δ to high salt or AmB. However, BSC2 overexpression in flo11Δ failed to induce AmB resistance, form biofilms, and affect cell wall biogenesis, while CHS2 overexpression compensated the resistance of flo11Δ to AmB. Additionally, BSC2 levels were positively correlated with maintaining cell membrane integrity under exposure to AmB, CAS, or a combination of both. BSC2 overexpression in nha1Δ exhibited a similar function of CHS2, which can compensate for the sensitivity of the mutant to high salt. Altogether, the results demonstrate for the first time that BSC2 may promote ion equilibrium by strengthening cell walls and inhibiting membrane damage in a FLO path-dependent manner, thus enhancing the resistance of yeast cells to AmB. This study also reveals the possible mechanism of antifungal drugs CAS and AmB combined to inhibit fungi.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms 铜绿假单胞菌苷元在与原核生物和真核生物相互作用中的作用。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-09-01 DOI: 10.1016/j.resmic.2024.104211
{"title":"Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms","authors":"","doi":"10.1016/j.resmic.2024.104211","DOIUrl":"10.1016/j.resmic.2024.104211","url":null,"abstract":"<div><p><span><span>Pseudomonas aeruginosa</span></span><span> is an opportunistic pathogen that produces two types of siderophores<span>, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. </span></span><em>P. aeruginosa</em><span><span> siderophores can serve as </span>virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with </span><em>P. aeruginosa</em> due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by <em>P. aeruginosa</em> play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of <em>P. aeruginosa</em><span> siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between </span><em>P. aeruginosa</em> siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of β-ionone on bacterial cells: the use of specific lux-biosensors β-酮对细菌细胞的影响:特定勒克斯生物传感器的使用。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-09-01 DOI: 10.1016/j.resmic.2024.104214
{"title":"The effect of β-ionone on bacterial cells: the use of specific lux-biosensors","authors":"","doi":"10.1016/j.resmic.2024.104214","DOIUrl":"10.1016/j.resmic.2024.104214","url":null,"abstract":"<div><p><span>The diversity of the biological activity<span><span> of volatile organic compounds (VOCs), including unsaturated </span>ketone<span> β-ionone, promising pharmacological, biotechnological, and agricultural agent, has aroused considerable interest. However, the functional role and mechanisms of action of VOCs remain insufficiently studied. In this work, the response of bacterial cells to the action of β-ionone was studied using specific bioluminescent lux-biosensors containing stress-sensitive promoters. We determined that in </span></span></span><span><em>Escherichia coli</em></span><span> cells, β-ionone induces oxidative stress (P</span><em>katG</em> and P<em>dps</em><span> promoters) through a specific response mediated by the OxyR/OxyS regulon, but not SoxR/SoxS (P</span><em>soxS</em> promoter). It has been shown that β-ionone at high concentrations (50 μM and above) causes a weak induction of the expression from the P<em>ibpA</em> promoter and slightly induces the P<em>colD</em> promoter in the <em>E. coli</em> biosensors; the observed effect is enhanced in the Δ<em>oxy</em><span><span>R mutants. This indicates the presence of some damage to proteins and DNA. β-Ionone was found to inhibit the bichaperone-dependent DnaKJE-ClpB refolding of heat-inactivated bacterial </span>luciferase in </span><em>E. coli</em> wild-type and Δ<em>ibpB</em> mutant strains. In the cells of the Gram-positive bacterium <span><span>Bacillus subtilis</span></span><span><span> 168 pNK-MrgA β-ionone does not cause oxidative stress. Thus, in this work, the specificity of bacterial </span>cell stress responses to the action of β-ionone was shown.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular insights into PGPR fluorescent Pseudomonads complex mediated intercellular and interkingdom signal transduction mechanisms in promoting plant's immunity PGPR荧光假单胞菌复合体介导的细胞间和王国间信号转导机制在促进植物免疫方面的分子见解。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-09-01 DOI: 10.1016/j.resmic.2024.104218
{"title":"Molecular insights into PGPR fluorescent Pseudomonads complex mediated intercellular and interkingdom signal transduction mechanisms in promoting plant's immunity","authors":"","doi":"10.1016/j.resmic.2024.104218","DOIUrl":"10.1016/j.resmic.2024.104218","url":null,"abstract":"<div><p><span><span>The growth-promoting and immune modulatory properties of different strains of plant growth promoting rhizobacteria<span> (PGPR) fluorescent Pseudomonads complex (PFPC) can be explored to combat food security challenges. These PFPC prime plants through induced systemic resistance, fortify plants to overcome future pathogen-mediated vulnerability by eliciting robust systemic acquired resistance through regulation by nonexpressor of pathogenesis-related genes 1. Moreover, outer </span></span>membrane vesicles released from </span><span><span>Pseudomonas fluorescens</span></span><span> also elicit a broad spectrum of immune responses, presenting a rapid viable alternative to whole cells. Thus, PFPC can help the host to maintain an equilibrium between growth and immunity, ultimately leads to increased crop yield.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems 元基因组学方法揭示了各种作物生态系统中植物生长促进微生物 (PGPM) 与抑制疫霉菌 (Phytophthora sp.) 的动态关系。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-09-01 DOI: 10.1016/j.resmic.2024.104217
{"title":"Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems","authors":"","doi":"10.1016/j.resmic.2024.104217","DOIUrl":"10.1016/j.resmic.2024.104217","url":null,"abstract":"<div><p><span><span>Phytophthora</span></span><span> species are destructive pathogens causing yield losses in different ecological systems, such as potato, black pepper, pepper, avocado, citrus, and tobacco. The diversity of plant growth-promoting microorganisms (PGPM) plays a crucial role in disease suppression. Knowledge of metagenomics<span> approaches is essential for assessing the dynamics of PGPM and </span></span><em>Phytophthora</em><span> species across various ecosystems, facilitating effective management strategies for better crop protection. This review discusses the dynamic interplay between PGPM and </span><em>Phytophthora</em><span> sp. using metagenomics approaches that sheds light on the potential of PGPM strains tailored to specific crop ecosystems to bolster pathogen suppressiveness.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Listeria monocytogenes in beef: a hidden risk 牛肉中的李斯特菌:隐藏的风险
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-09-01 DOI: 10.1016/j.resmic.2024.104215
{"title":"Listeria monocytogenes in beef: a hidden risk","authors":"","doi":"10.1016/j.resmic.2024.104215","DOIUrl":"10.1016/j.resmic.2024.104215","url":null,"abstract":"<div><p><span><span>Listeria monocytogenes</span></span> in beef receives less attention compared to other pathogens such as <em>Salmonella</em> and <span><em>Escherichia coli</em></span>. To address this gap, we conducted a literature review focusing on the presence of <em>L. monocytogenes</em><span> in beef. This review encompasses the pathogenic mechanisms, routes of contamination, prevalence rates, and the laws and regulations employed in various countries. Our findings reveal a prevalence of </span><em>L. monocytogenes</em><span><span> in beef and beef products ranging from 2.5% to 59.4%. Notably, serotype 4b was most frequently isolated in cases of beef contamination during food processing, with the skinning and </span>evisceration stages identified as critical points of contamination.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
d-aspartate, an amino-acid important for human health, supports anaerobic respiration in several Campylobacter species D- 天门冬氨酸是一种对人体健康非常重要的氨基酸,它支持弯曲杆菌中多种细菌的厌氧呼吸。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-09-01 DOI: 10.1016/j.resmic.2024.104219
{"title":"d-aspartate, an amino-acid important for human health, supports anaerobic respiration in several Campylobacter species","authors":"","doi":"10.1016/j.resmic.2024.104219","DOIUrl":"10.1016/j.resmic.2024.104219","url":null,"abstract":"<div><p>Despite being classified as microaerophilic microorganisms, most <span><span>Campylobacter</span></span> species can grow anaerobically, using formate or molecular hydrogen (H<sub>2</sub>) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both <span>l</span>-asparagine (<span>l</span>-Asn) and <span>l</span>-aspartic acid (<span>l</span>-Asp) bolster H<sub>2</sub><span>-driven anaerobic growth in several </span><span><em>Campylobacter</em></span> species, whereas the <span>d-</span><span><span>enantiomer form of both </span>asparagine (</span><span>d</span><span>-Asn) and aspartic acid (</span><span>d</span>-Asp) only increased anaerobic growth in <span><span>Campylobacter concisus</span></span> strain 13826 and <span><em>Campylobacter ureolyticus</em></span> strain NCTC10941. A gene annotated as <em>racD</em> encoding for a putative <span>d</span>/<span>l</span><span>-Asp racemase was identified in the genome of both strains. Disruption of </span><em>racD</em> in <em>Cc</em>13826 resulted in the inability of the mutant strain to use either <span>d-</span>enantiomer during anaerobic growth. Hence, our results suggest that the <em>racD</em> gene is required for campylobacters to use either <span>d</span>-Asp or <span>d</span>-Asn. The use of <span>d</span>-Asp by various human opportunistic bacterial pathogens, including <em>C. concisus</em>, <em>C. ureolyticus</em>, and also possibly select strains of <em>Campylobacter gracilis</em>, <span><span>Campylobacter rectus</span></span> and <em>Campylobacter showae</em>, is significant, because <span>d</span><span>-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a </span><span>d-</span><span>amino acid essential for human health.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endopeptidase activities of Clostridium botulinum toxins in the development of this bacterium 肉毒梭状芽孢杆菌毒素在该细菌发展过程中的内肽酶活性。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-09-01 DOI: 10.1016/j.resmic.2024.104216
{"title":"Endopeptidase activities of Clostridium botulinum toxins in the development of this bacterium","authors":"","doi":"10.1016/j.resmic.2024.104216","DOIUrl":"10.1016/j.resmic.2024.104216","url":null,"abstract":"<div><p><span>By-products like CO₂ and organic acids, produced during </span><span><span>Clostridium botulinum</span></span> growth, appear to inhibit its development and reduce ATP production. A decrease in ATP production creates an imbalance in the ATP/GTP ratio. GTP activates CodY, which regulates <span><em>BoNT</em></span><span><span><span><span> expression. This toxin is released into the extracellular medium. Its light chains act as a specific endopeptidase, targeting </span>SNARE proteins. The specific </span>amino acids released enter the cells and are metabolized by the Stickland reaction, resulting in the synthesis of ATP. This ATP might then be used by </span>histidine<span> kinases to activate Spo0A, the main regulator initiating sporulation, through phosphorylation.</span></span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biofilms in soils: The evidence about sessile versus planktonic microorganisms needs revisiting 土壤中的生物膜:需要重新审视有关无柄微生物与浮游微生物的证据。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-09-01 DOI: 10.1016/j.resmic.2024.104204
{"title":"Biofilms in soils: The evidence about sessile versus planktonic microorganisms needs revisiting","authors":"","doi":"10.1016/j.resmic.2024.104204","DOIUrl":"10.1016/j.resmic.2024.104204","url":null,"abstract":"","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid lysination by MprF contributes to hemolytic pigment retention in group B Streptococcus. MprF 的脂质裂解作用有助于 B 群链球菌中溶血性色素的保留。
IF 2.5 4区 生物学
Research in microbiology Pub Date : 2024-08-26 DOI: 10.1016/j.resmic.2024.104231
Elise Caliot, Arnaud Firon, Audrey Solgadi, Patrick Trieu-Cuot, Shaynoor Dramsi
{"title":"Lipid lysination by MprF contributes to hemolytic pigment retention in group B Streptococcus.","authors":"Elise Caliot, Arnaud Firon, Audrey Solgadi, Patrick Trieu-Cuot, Shaynoor Dramsi","doi":"10.1016/j.resmic.2024.104231","DOIUrl":"https://doi.org/10.1016/j.resmic.2024.104231","url":null,"abstract":"<p><p>Group B Streptococcus (GBS) is the leading cause of neonatal sepsis and meningitis. A major virulence factor is a pigmented beta-haemolytic/cyto-lysin (β-h/c) toxin with an ornithine rhamnolipid structure. We initially observed that absence of MprF enzyme altered pigmentation and haemolytic activity in GBS. Next, we showed that MprF-dependent lipid lysination contributes to the retention of the ornithine rhamnolipid within GBS membrane. Furthermore, cationic lipidation by MprF altered membrane properties contributing to resistance to the cyclic lipopeptide daptomycin and to acidic pH. This study highlights the importance of cationic lipids in cell envelope homeostasis and in modulating β-h/c activity.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信