Yanna Ren, Bei Han, Shijie Wang, Xingbin Wang, Qi Liu, Menghao Cai
{"title":"De novo biosynthesis and nicotinamide biotransformation of nicotinamide mononucleotide by engineered yeast cells","authors":"Yanna Ren, Bei Han, Shijie Wang, Xingbin Wang, Qi Liu, Menghao Cai","doi":"10.1111/1751-7915.70048","DOIUrl":"10.1111/1751-7915.70048","url":null,"abstract":"<p>β-Nicotinamide mononucleotide (NMN) is a precursor of NAD<sup>+</sup> in mammals. Research on NAD<sup>+</sup> has demonstrated its crucial role against aging and disease. Here two technical paths were established for the efficient synthesis of NMN in the yeast <i>Pichia pastoris</i>, enabling the production of NMN from the low-cost nicotinamide (NAM) or basic carbon sources. The yeast host was systematically modified to adapt to the biosynthesis and accumulation of NMN. To improve the semi-biosynthesis of NMN from NAM, nicotinamide phosphoribosyltransferases were expressed intracellular to evaluate their catalytic activities. The accumulation of extracellular NMN was further increased by the co-expression of an NMN transporter. Fine-tuning of gene expression level produced 72.1 mg/L NMN from NAM in flasks. To achieve de novo biosynthesis NMN, a heterologous biosynthetic pathway was reassembled in yeast cells. Fine-tuning of pathway nodes by the modification of gene expression level and enhancement of precursor generation allowed efficient NMN synthesis from glucose (36.9 mg/L) or ethanol (57.8 mg/L) in flask. Lastly, cultivations in a bioreactor in fed-batch mode achieved an NMN titre of 1004.6 mg/L at 165 h from 2 g NAM and 868 g glucose and 980.4 mg/L at 91 h from 160 g glucose and 557 g ethanol respectively. This study provides a foundation for future optimization of NMN biosynthesis by engineered yeast cell factories.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giusi Favoino, Nicolas Krink, Tobias Schwanemann, Nick Wierckx, Pablo I. Nikel
{"title":"Enhanced biosynthesis of poly(3-hydroxybutyrate) in engineered strains of Pseudomonas putida via increased malonyl-CoA availability","authors":"Giusi Favoino, Nicolas Krink, Tobias Schwanemann, Nick Wierckx, Pablo I. Nikel","doi":"10.1111/1751-7915.70044","DOIUrl":"10.1111/1751-7915.70044","url":null,"abstract":"<p>Malonyl-coenzyme A (CoA) is a key precursor for the biosynthesis of multiple value-added compounds by microbial cell factories, including polyketides, carboxylic acids, biofuels, and polyhydroxyalkanoates. Owing to its role as a metabolic hub, malonyl-CoA availability is limited by competition in several essential metabolic pathways. To address this limitation, we modified a genome-reduced <i>Pseudomonas putida</i> strain to increase acetyl-CoA carboxylation while limiting malonyl-CoA utilization. Genes involved in sugar catabolism and its regulation, the tricarboxylic acid (TCA) cycle, and fatty acid biosynthesis were knocked-out in specific combinations towards increasing the malonyl-CoA pool. An enzyme-coupled biosensor, based on the <i>rppA</i> gene, was employed to monitor malonyl-CoA levels in vivo. RppA is a type III polyketide synthase that converts malonyl-CoA into flaviolin, a red-colored polyketide. We isolated strains displaying enhanced malonyl-CoA availability <i>via</i> a colorimetric screening method based on the RppA-dependent red pigmentation; direct flaviolin quantification identified four engineered strains had a significant increase in malonyl-CoA levels. We further modified these strains by adding a non-canonical pathway that uses malonyl-CoA as precursor for poly(3-hydroxybutyrate) biosynthesis. These manipulations led to increased polymer accumulation in the fully engineered strains, validating our general strategy to boost the output of malonyl-CoA–dependent pathways in <i>P</i>. <i>putida</i>.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William T. Cordell, Gennaro Avolio, Ralf Takors, Brian F. Pfleger
{"title":"Genome reduction improves octanoic acid production in scale down bioreactors","authors":"William T. Cordell, Gennaro Avolio, Ralf Takors, Brian F. Pfleger","doi":"10.1111/1751-7915.70034","DOIUrl":"10.1111/1751-7915.70034","url":null,"abstract":"<p>Microorganisms in large-scale bioreactors are exposed to heterogeneous environmental conditions due to physical mixing constraints. Nutritional gradients can lead to transient expression of energetically wasteful stress responses and as a result, can reduce the titres, rates and yields of a bioprocess at larger scales. To what extent these process parameters are impacted is often unknown and therefore bioprocess scale-up comes with major risk. Designing platform strains to account for these intermittent stresses before introducing synthesis pathways is one strategy for de-risking bioprocess development. For example, <i>Escherichia coli</i> strain RM214 is a derivative of wild-type MG1655 that has had several genes and whole operons removed from its genome based on their metabolic cost. In this study, we engineered <i>E. coli</i> strain RM214 (referred to as WG02) to produce octanoic acid from glycerol in batch-flask and fed-batch bioreactor cultivations and compared it to an octanoic acid-producing <i>E. coli</i> MG1655 (WG01). In batch flask cultivations, the two strains performed similarly. However, in carbon limited fed-batch bioreactor cultivations, WG02 provided a greater than 22% boost to biomass compared to WG01 while maintaining similar titres of octanoic acid. Reducing the biomass accumulation of WG02 with nitrogen limited fed-batch cultivation resulted in a 16% improvement in octanoic acid titre over WG01. Finally, in a scale-down system consisting of a stirred tank reactor (representing a well-mixed zone) and plug flow reactor (representing an intermittent carbon starvation zone), WG02 again improved octanoic acid titre by almost 18% while maintaining similar biomass concentrations as WG01.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540873/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic constraints on the window of opportunity for direct interspecies electron transfer (DIET)","authors":"Jan Dolfing","doi":"10.1111/1751-7915.70019","DOIUrl":"10.1111/1751-7915.70019","url":null,"abstract":"<p>Reduction potentials of the electron producing and electron consuming physiologies constrain the window of opportunity in direct interspecies electron transfer (DIET).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingkun Wan, Jiaqi Zheng, Edward Wai-Chi Chan, Sheng Chen
{"title":"Proton motive force and antibiotic tolerance in bacteria","authors":"Yingkun Wan, Jiaqi Zheng, Edward Wai-Chi Chan, Sheng Chen","doi":"10.1111/1751-7915.70042","DOIUrl":"10.1111/1751-7915.70042","url":null,"abstract":"<p>Bacterial antibiotic tolerance is a decades-old phenomenon in which a bacterial sub-population, commonly known as persisters, does not respond to antibiotics and remains viable upon prolonged antimicrobial treatment. Persisters are detectable in populations of bacterial strains that are not antibiotic-resistant and are known to be responsible for treatment failure and the occurrence of chronic and recurrent infection. The clinical significance of antibiotic tolerance is increasingly being recognized and comparable to antibiotic resistance. To eradicate persisters, it is necessary to understand the cellular mechanisms underlying tolerance development. Previous works showed that bacterial antibiotic tolerance was attributed to the reduction in metabolic activities and activation of the stringent response, SOS response and the toxin–antitoxin system which down-regulates transcription functions. The latest research findings, however, showed that decreased metabolic activities alone do not confer a long-lasting tolerance phenotype in persisters, and that active defence mechanisms such as efflux and DNA repair are required for the long-term maintenance of phenotypic tolerance. As such active tolerance-maintenance mechanisms are energy-demanding, persisters need to generate and maintain the transmembrane proton motive force (PMF) for oxidative phosphorylation. This minireview summarizes the current understanding of cellular mechanisms essential for prolonged expression of phenotypic antibiotic tolerance in bacteria, with an emphasis on the importance of generation and maintenance of PMF in enabling proper functioning of the active tolerance mechanisms in persisters. How such mechanisms can be utilized as targets for the development of anti-persister strategies will be discussed.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joy Birkelbach, Carsten E. Seyfert, Sebastian Walesch, Rolf Müller
{"title":"Harnessing Gram-negative bacteria for novel anti-Gram-negative antibiotics","authors":"Joy Birkelbach, Carsten E. Seyfert, Sebastian Walesch, Rolf Müller","doi":"10.1111/1751-7915.70032","DOIUrl":"10.1111/1751-7915.70032","url":null,"abstract":"<p>Natural products have proven themselves as a valuable resource for antibiotics. However, in view of increasing antimicrobial resistance, there is an urgent need for new, structurally diverse agents that have the potential to overcome resistance and treat Gram-negative pathogens in particular. Historically, the search for new antibiotics was strongly focussed on the very successful Actinobacteria. On the other hand, other producer strains have been under-sampled and their potential for the production of bioactive natural products has been underestimated. In this mini-review, we highlight prominent examples of novel anti-Gram negative natural products produced by Gram-negative bacteria that are currently in lead optimisation or preclinical development. Furthermore, we will provide insights into the considerations and strategies behind the discovery of these agents and their putative applications.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niklas Probul, Zihua Huang, Christina Caroline Saak, Jan Baumbach, Markus List
{"title":"AI in microbiome-related healthcare","authors":"Niklas Probul, Zihua Huang, Christina Caroline Saak, Jan Baumbach, Markus List","doi":"10.1111/1751-7915.70027","DOIUrl":"10.1111/1751-7915.70027","url":null,"abstract":"<p>Artificial intelligence (AI) has the potential to transform clinical practice and healthcare. Following impressive advancements in fields such as computer vision and medical imaging, AI is poised to drive changes in microbiome-based healthcare while facing challenges specific to the field. This review describes the state-of-the-art use of AI in microbiome-related healthcare. It points out limitations across topics such as data handling, AI modelling and safeguarding patient privacy. Furthermore, we indicate how these current shortcomings could be overcome in the future and discuss the influence and opportunities of increasingly complex data on microbiome-based healthcare.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic engineering of Streptomyces roseosporus for increased production of clinically important antibiotic daptomycin","authors":"Xingwang Li, Ziwei Sang, Xuejin Zhao, Ying Wen","doi":"10.1111/1751-7915.70038","DOIUrl":"10.1111/1751-7915.70038","url":null,"abstract":"<p>Daptomycin (DAP), a novel cyclic lipopeptide antibiotic produced by <i>Streptomyces roseosporus</i>, is clinically important for treatment of infections caused by multidrug-resistant Gram-positive pathogens, but the low yield hampers its large-scale industrial production. Here, we describe a combination metabolic engineering strategy for constructing a DAP high-yielding strain. Initially, we enhanced aspartate (Asp) precursor supply in <i>S. roseosporus</i> wild-type (WT) strain by separately inhibiting Asp degradation and competitive pathway genes using CRISPRi and overexpressing Asp synthetic pathway genes using strong promoter <i>kasOp*</i>. The resulting strains all showed increased DAP titre. Combined inhibition of <i>acsA4</i>, <i>pta</i>, <i>pyrB</i>, and <i>pyrC</i> increased DAP titre to 167.4 μg/mL (73.5% higher than WT value). Co-overexpression of <i>aspC</i>, <i>gdhA</i>, <i>ppc</i>, and <i>ecaA</i> led to DAP titre 168 μg/mL (75.7% higher than WT value). Concurrently, we constructed a chassis strain favourable for DAP production by abolishing by-product production (i.e., deleting a 21.1 kb region of the red pigment biosynthetic gene cluster (BGC)) and engineering the DAP BGC (i.e., replacing its native <i>dptEp</i> with <i>kasOp*</i>). Titre for the resulting chassis strain reached 185.8 μg/mL. Application of our Asp precursor supply strategies to the chassis strain further increased DAP titre to 302 μg/mL (2.1-fold higher than WT value). Subsequently, we cloned the engineered DAP BGC and duplicated it in the chassis strain, leading to DAP titre 274.6 μg/mL. The above strategies, in combination, resulted in maximal DAP titre 350.7 μg/mL (2.6-fold higher than WT value), representing the highest reported DAP titre in shake-flask fermentation. These findings provide an efficient combination strategy for increasing DAP production and can also be readily applied in the overproduction of other Asp-related antibiotics.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily L. Gulliver, Sara K. Di Simone, Michelle Chonwerawong, Samuel C. Forster
{"title":"Unlocking the potential for microbiome-based therapeutics to address the sustainable development goal of good health and wellbeing","authors":"Emily L. Gulliver, Sara K. Di Simone, Michelle Chonwerawong, Samuel C. Forster","doi":"10.1111/1751-7915.70041","DOIUrl":"10.1111/1751-7915.70041","url":null,"abstract":"<p>Recent years have witnessed major advances and an ever-growing list of healthcare applications for microbiome-based therapeutics. However, these advances have disproportionately targeted diseases common in high-income countries (HICs). Within low- to middle-income countries (LMIC), opportunities for microbiome-based therapeutics include sexual health epidemics, maternal health, early life mortality, malnutrition, vaccine response and infectious diseases. In this review we detail the advances that have been achieved in microbiome-based therapeutics for these areas of healthcare and identify where further work is required. Current efforts to characterise microbiomes from LMICs will aid in targeting and optimisation of therapeutics and preventative strategies specifically suited to the unmet needs within these populations. Once achieved, opportunities from disease treatment and improved treatment efficacy through to disease prevention and vector control can be effectively addressed using probiotics and live biotherapeutics. Together these strategies have the potential to increase individual health, overcome logistical challenges and reduce overall medical, individual, societal and economic costs.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Slavica Janevska, Sophie Weiser, Ying Huang, Jun Lin, Sandra Hoefgen, Katarina Jojić, Amelia E. Barber, Tim Schäfer, Janis Fricke, Dirk Hoffmeister, Lars Regestein, Vito Valiante, Johann E. Kufs
{"title":"Optimized psilocybin production in tryptophan catabolism-repressed fungi","authors":"Slavica Janevska, Sophie Weiser, Ying Huang, Jun Lin, Sandra Hoefgen, Katarina Jojić, Amelia E. Barber, Tim Schäfer, Janis Fricke, Dirk Hoffmeister, Lars Regestein, Vito Valiante, Johann E. Kufs","doi":"10.1111/1751-7915.70039","DOIUrl":"10.1111/1751-7915.70039","url":null,"abstract":"<p>The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy-refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a ‘Breakthrough Therapy’ by the US Food and Drug Administration, and therefore a sustainable production process must be established to meet future market demands. Here, we present the development of an in vivo psilocybin production chassis based on repression of <span>l</span>-tryptophan catabolism. We demonstrate the proof of principle in <i>Saccharomyces cerevisiae</i> expressing the psilocybin biosynthetic genes. Deletion of the two aminotransferase genes <i>ARO8</i>/<i>9</i> and the indoleamine 2,3-dioxygenase gene <i>BNA2</i> yielded a fivefold increase of psilocybin titre. We transferred this knowledge to the filamentous fungus <i>Aspergillus nidulans</i> and identified functional <i>ARO8</i>/<i>9</i> orthologs involved in fungal <span>l</span>-tryptophan catabolism by genome mining and cross-complementation. The double deletion mutant of <i>A. nidulans</i> resulted in a 10-fold increased psilocybin production. Process optimization based on respiratory activity measurements led to a final psilocybin titre of 267 mg/L in batch cultures with a space–time-yield of 3.7 mg/L/h. These results demonstrate the suitability of our engineered <i>A. nidulans</i> to serve as a production strain for psilocybin and other tryptamine-derived pharmaceuticals.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}