Chiara Bregoli, Jacopo Fiocchi, Carlo Alberto Biffi, Ausonio Tuissi
{"title":"Additively manufactured medical bone screws: an initial study to investigate the impact of lattice-based Voronoi structure on implant primary stability","authors":"Chiara Bregoli, Jacopo Fiocchi, Carlo Alberto Biffi, Ausonio Tuissi","doi":"10.1108/rpj-10-2022-0363","DOIUrl":"https://doi.org/10.1108/rpj-10-2022-0363","url":null,"abstract":"Purpose The present study investigates the mechanical properties of three types of Ti6Al4V ELI bone screws realized using the laser powder bed fusion (LPBF) process: a fully threaded screw and two groups containing differently arranged sectors made of lattice-based Voronoi (LBV) structure in a longitudinal and transversal position, respectively. This study aims to explore the potentialities related to the introduction of LBV structure and assess its impact on the implant’s primary stability and mechanical performance. Design/methodology/approach The optimized bone screw designs were realized using the LPBF process. The quality and integrity of the specimens were assessed by scanning electron microscopy and micro-computed tomography. Primary stability was experimentally verified by the insertion and removal of the screws in standard polyurethane foam blocks. Finally, torsional tests were carried out to compare and assess the mechanical strength of the different designs. Findings The introduction of the LBV structure decreases the elastic modulus of the implant. Longitudinal LBV type screws demonstrated the lowest insertion torque (associated with lower bone damage) while still displaying promising torsional strength and removal force compared with full-thread screws. The use of LBV structure can promote improved functional performances with respect to the reference thread, enabling the use of lattice structures in the biomedical sector. Originality/value The paper fulfils an identified interest in designing customized implants with improved primary stability and promising features for secondary stability.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134903909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Explainable deep neural network for in-plain defect detection during additive manufacturing","authors":"Deepak Kumar, Yongxin Liu, Houbing Song, Sirish Namilae","doi":"10.1108/rpj-05-2023-0157","DOIUrl":"https://doi.org/10.1108/rpj-05-2023-0157","url":null,"abstract":"Purpose The purpose of this study is to develop a deep learning framework for additive manufacturing (AM), that can detect different defect types without being trained on specific defect data sets and can be applied for real-time process control. Design/methodology/approach This study develops an explainable artificial intelligence (AI) framework, a zero-bias deep neural network (DNN) model for real-time defect detection during the AM process. In this method, the last dense layer of the DNN is replaced by two consecutive parts, a regular dense layer denoted (L1) for dimensional reduction, and a similarity matching layer (L2) for equal weight and non-biased cosine similarity matching. Grayscale images of 3D printed samples acquired during printing were used as the input to the zero-bias DNN. Findings This study demonstrates that the approach is capable of successfully detecting multiple types of defects such as cracks, stringing and warping with high accuracy without any prior training on defective data sets, with an accuracy of 99.5%. Practical implications Once the model is set up, the computational time for anomaly detection is lower than the speed of image acquisition indicating the potential for real-time process control. It can also be used to minimize manual processing in AI-enabled AM. Originality/value To the best of the authors’ knowledge, this is the first study to use zero-bias DNN, an explainable AI approach for defect detection in AM.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134884036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rapid prototyping of 3d printed micropillars using fused filament fabrication technique for biomedical applications","authors":"Shamima Khatoon, Gufran Ahmad","doi":"10.1108/rpj-03-2023-0096","DOIUrl":"https://doi.org/10.1108/rpj-03-2023-0096","url":null,"abstract":"Purpose The hygroscopic properties of 3D-printed filaments and moisture absorption itself during the process result in dimensional inaccuracy, particularly for nozzle movement along the x-axis and for micro-scale features. In view of that, this study aims to analyze in depth the dimensional errors and deviations of the fused filament fabrication (FFF)/fused deposition modeling (FDM) 3D-printed micropillars (MPs) from the reference values. A detailed analysis into the variability in printed dimensions below 1 mm in width without any deformations in the printed shape of the designed features, for challenging filaments like polymethyl methacrylate (PMMA) has been done. The study also explores whether the printed shape retains the designed structure. Design/methodology/approach A reference model for MPs of width 800 µm and height 2,000 µm is selected to generate a g-code model after pre-processing of slicing and meshing parameters for 3D printing of micro-scale structure with defined boundaries. Three SETs, SET-A, SET-B and SET-C, for nozzle diameter of 0.2 mm, 0.25 mm and 0.3 mm, respectively, have been prepared. The SETs containing the MPs were fabricated with the spacing (S) of 2,000 µm, 3,200 µm and 4,000 µm along the print head x-axis. The MPs were measured by taking three consecutive measurements (top, bottom and middle) for the width and one for the height. Findings The prominent highlight of this study is the successful FFF/FDM 3D printing of thin features (<1mm) without any deformation. The mathematical analysis of the variance of the optical microscopy measurements concluded that printed dimensions for micropillar widths did not vary significantly, retaining more than 65% of the recording within the first standard deviation (SD) (±1 s). The minimum value of SD is obtained from the samples of SET-B, that is, 31.96 µm and 35.865 µm, for height and width, respectively. The %RE for SET-B samples is 5.09% for S = 2,000µm, 3.86% for S = 3,200µm and 1.09% for S = 4,000µm. The error percentage is so small that it could be easily compensated by redesigning. Research limitations/implications The study does not cover other 3D printing techniques of additive manufacturing like stereolithography, digital light processing and material jetting. Practical implications The presented study can be potentially implemented for the rapid prototyping of microfluidics mixer, bioseparator and lab-on-chip devices, both for membrane-free bioseparation based on microfiltration, plasma extraction from whole blood, size-selection trapping of unwanted blood cells, and also for membrane-based plasma extraction that requires supporting microstructures. Our developed process may prove to be far more economical than the other existing techniques for such applications. Originality/value For the first time, this work presents a comprehensive analysis of the fabrication of micropillars using FDM/FFF 3D printing and PMMA in filament form. The primary focus of the study is to min","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"150 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana C. Lopes, Álvaro M. Sampaio, António J. Pontes
{"title":"Development and characterization of composite materials with multi-walled carbon nanotubes and graphene nanoplatelets for powder bed fusion","authors":"Ana C. Lopes, Álvaro M. Sampaio, António J. Pontes","doi":"10.1108/rpj-04-2023-0142","DOIUrl":"https://doi.org/10.1108/rpj-04-2023-0142","url":null,"abstract":"Purpose With the technological progress, high-performance materials are emerging in the market of additive manufacturing to comply with the advanced requirements demanded for technical applications. In selective laser sintering (SLS), innovative powder materials integrating conductive reinforcements are attracting much interest within academic and industrial communities as promising alternatives to common engineering thermoplastics. However, the practical implementation of functional materials is limited by the extensive list of conditions required for a successful laser-sintering process, related to the morphology, powder size and shape, heat resistance, melt viscosity and others. The purpose of this study is to explore composite materials of polyamide 12 (PA12) incorporating multi-walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GNP), aiming to understand their suitability for advanced SLS applications. Design/methodology/approach PA12-MWCNT and PA12-GNP materials were blended through a pre-optimized process of mechanical mixing with various percentages of reinforcement between 0.50 wt.% and 3.00 wt.% and processed by SLS with appropriate volume energy density. Several test specimens were produced and characterized with regard to processability, thermal, mechanical, electrical and morphological properties. Finally, a comparative analysis of the performance of both carbon-based materials was performed. Findings The results of this research demonstrated easier processability and higher tensile strength and impact resistance for composites incorporating MWCNT but higher tensile elastic modulus, compressive strength and microstructural homogeneity for GNP-based materials. Despite the decrease in mechanical properties, valuable results of electrical conductivity were obtained with both carbon solutions until 10 –6 S/cm. Originality/value The carbon-based composites developed in this research allow for the expansion of the applicability of laser-sintered parts to advanced fields, including electronics-related industries that require functional materials capable of protecting sensitive devices against electrostatic discharge.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"211 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135109545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of copper interlayer on the interface characteristics of stainless steel–aluminium transitional structure in wire arc directed energy deposition","authors":"Amrit Raj Paul, Manidipto Mukherjee, Mohit Kumar Sahu","doi":"10.1108/rpj-03-2023-0089","DOIUrl":"https://doi.org/10.1108/rpj-03-2023-0089","url":null,"abstract":"Purpose The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This study also aims to analyse the metallographic properties of the SS–Cu and Al–Cu interfaces and their mechanical properties. Design/methodology/approach The study used transitional deposition of SS–Al material over each other by incorporating Cu as interlayer between the two. The scanning electron microscope analysis, energy dispersive X-ray analysis, X-ray diffractometer analysis, tensile testing and micro-hardness measurement were performed to investigate the interface characteristics and mechanical properties of the SS–Al transitional wall. Findings The study discovered that the WA-DED process with a Cu interlayer worked well for the deposition of SS–Al transitional walls. The formation of solid solutions of Fe–Cu and Fe–Si was observed at the SS–Cu interface rather than intermetallic compounds (IMCs), according to the metallographic analysis. On the other hand, three different IMCs were formed at the Al–Cu interface, namely, Al–Cu, Al 2 Cu and Al 4 Cu 9 . The study also observed the formation of a lamellar structure of Al and Al 2 Cu at the hypereutectic phase. The mechanical testing revealed that the Al–Cu interface failed without significant deformation, i.e. < 4.73%, indicating the brittleness of the interface. Originality/value The study identified the formation of HCP–Fe at the SS–Cu interface, which has not been previously reported in additive manufacturing literature. Furthermore, the study observed the formation of a lamellar structure of Al and Al2Cu phase at the hypereutectic phase, which has not been previously reported in SS–Al transitional wall deposition.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring innovation system dynamics: event history analysis of the evolution of the South African additive manufacturing industry","authors":"Michelle McClelland, Sara Grobbelaar, N. Sacks","doi":"10.1108/rpj-04-2023-0143","DOIUrl":"https://doi.org/10.1108/rpj-04-2023-0143","url":null,"abstract":"\u0000Purpose\u0000This paper aims to explore the growth of the South African additive manufacturing (AM) industry over the past 31 years through the lens of the innovation system (IS) perspective, examining the actor dynamics and mechanisms that facilitated or hindered the industry’s development.\u0000\u0000\u0000Design/methodology/approach\u0000The study used a case study research approach, analysing semi-structured interviews with eight South African AM experts and documentary evidence. The IS framework and the realist evaluation perspective were used, using a context-intervention-mechanism-outcome (CIMO)-based event history analysis (EHA) framework to explore the actor dynamics and mechanisms of the case study.\u0000\u0000\u0000Findings\u0000The study used a case study research approach, analysing semi-structured interviews with eight South African AM experts and documentary evidence. The IS framework and the realist evaluation perspective were used, using a CIMO-based EHA framework to explore the actor dynamics and mechanisms of the case study.\u0000\u0000\u0000Originality/value\u0000This paper contributes to the South African AM industry literature by providing an overview of the industry events over the past three decades and analysing the industry through the IS framework. The study is among the first to analyse the development of the South African AM industry, presenting innovation scholars and managers with valuable decision-making support by providing insights into the innovation activities performed during each stage of the industry’s development, who performed them, the sequence in which they were performed and the outcomes they delivered.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44537190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dileep Bonthu, Bharath H.S., S. Bekinal, P. Jeyaraj, M. Doddamani
{"title":"Dynamic response of 3D printed functionally graded sandwich foams","authors":"Dileep Bonthu, Bharath H.S., S. Bekinal, P. Jeyaraj, M. Doddamani","doi":"10.1108/rpj-01-2023-0016","DOIUrl":"https://doi.org/10.1108/rpj-01-2023-0016","url":null,"abstract":"\u0000Purpose\u0000The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.\u0000\u0000\u0000Design/methodology/approach\u0000Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.\u0000\u0000\u0000Findings\u0000The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.\u0000\u0000\u0000Originality/value\u0000The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43742173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. La Fé-Perdomo, J. Ramos-Grez, Ramon Quiza, Ignacio Jeria, C. Guerra
{"title":"A novel optimization framework for minimizing the surface roughness while increasing the material processing rate in the SLM process of 316L stainless steel","authors":"I. La Fé-Perdomo, J. Ramos-Grez, Ramon Quiza, Ignacio Jeria, C. Guerra","doi":"10.1108/rpj-11-2022-0390","DOIUrl":"https://doi.org/10.1108/rpj-11-2022-0390","url":null,"abstract":"\u0000Purpose\u0000316 L stainless steel alloy is potentially the most used material in the selective laser melting (SLM) process because of its versatility and broad fields of applications (e.g. medical devices, tooling, automotive, etc.). That is why producing fully functional parts through optimal printing configuration is still a key issue to be addressed. This paper aims to present an entirely new framework for simultaneously reducing surface roughness (SR) while increasing the material processing rate in the SLM process of 316L stainless steel, keeping fundamental mechanical properties within their allowable range.\u0000\u0000\u0000Design/methodology/approach\u0000Considering the nonlinear relationship between the printing parameters and features analyzed in the entire experimental space, machine learning and statistical modeling methods were defined to describe the behavior of the selected variables in the as-built conditions. First, the Box–Behnken design was adopted and corresponding experimental planning was conducted to measure the required variables. Second, the relationship between the laser power, scanning speed, hatch distance, layer thickness and selected responses was modeled using empirical methods. Subsequently, three heuristic algorithms (nonsorting genetic algorithm, multi-objective particle swarm optimization and cross-entropy method) were used and compared to search for the Pareto solutions of the formulated multi-objective problem.\u0000\u0000\u0000Findings\u0000A minimum SR value of approximately 12.83 μm and a maximum material processing rate of 2.35 mm3/s were achieved. Finally, some verification experiments recommended by the decision-making system implemented strongly confirmed the reliability of the proposed optimization methodology by providing the ultimate part qualities and their mechanical properties nearly identical to those defined in the literature, with only approximately 10% of error at the maximum.\u0000\u0000\u0000Originality/value\u0000To the best of the authors’ knowledge, this is the first study dealing with an entirely different and more comprehensive approach for optimizing the 316 L SLM process, embedding it in a unique framework of mechanical and surface properties and material processing rate.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47142118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shekhar Sharma, S. Datta, Tarapada Roy, S. Mahapatra
{"title":"Study of parametric interaction during fused filament fabrication (FFF) using interpretive structural modelling (ISM) followed by experimental analysis","authors":"Shekhar Sharma, S. Datta, Tarapada Roy, S. Mahapatra","doi":"10.1108/rpj-03-2023-0092","DOIUrl":"https://doi.org/10.1108/rpj-03-2023-0092","url":null,"abstract":"\u0000Purpose\u0000Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based rapid prototyping and customized product fabrication in relation to aerospace, automotive, architecture, consumer goods and medical applications. During FFF, part quality (surface finish, dimensional accuracy and static mechanical strength) is greatly influenced by several process parameters. The paper aims to study FFF parametric influence on aforesaid part quality aspects. In addition, dynamic analysis of the FFF part is carried out.\u0000\u0000\u0000Design/methodology/approach\u0000Interpretive structural modelling is attempted to articulate interrelationships that exist amongst FFF parameters. Next, a few specimens are fabricated using acrylonitrile butadiene styrene plastic at varied build orientation and build style. Effects of build orientation and build style on part’s ultimate tensile strength, flexure strength along with width build time are studied. Prototype beams (of different thickness) are fabricated by varying build style. Instrumental impact hammer Modal analysis is performed on the cantilever beams (cantilever support) to obtain the natural frequencies (first mode). Parametric influence on natural frequencies is also studied.\u0000\u0000\u0000Findings\u0000Static mechanical properties (tensile and flexure strength) are greatly influenced by build style and build orientation. Natural frequency (NF) of prototype beams is highly influenced by the build style and beam thickness.\u0000\u0000\u0000Originality/value\u0000FFF built parts when subjected to application, may have to face a variety of external dynamic loads. If frequency of induced vibration (due to external force) matches with NF of the component part, resonance is incurred. To avoid occurrence of resonance, operational frequency (frequency of externally applied forces) must be lower/ higher than the NF. Because NF depends on mass and stiffness, and boundary conditions, FFF parts produced through varying build style may definitely correspond to varied NF. This aspect is explained in this work.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45075215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible and multi-material intrinsically conductive polymer devices fabricated via DLP and DIW additive manufacturing techniques","authors":"K. Engel, P. Kilmartin, O. Diegel","doi":"10.1108/rpj-02-2023-0037","DOIUrl":"https://doi.org/10.1108/rpj-02-2023-0037","url":null,"abstract":"\u0000Purpose\u0000The purpose of this study is to explore the synthesis of novel conductive photo-resins to produce flexible conducting composites for use in additive manufacturing. By using direct ink writing (DIW) additive manufacturing, this study aims to explore the fabrication of multimaterial devices with conductive and insulating components. Using digital light processing (DLP) additive manufacturing, this study aims to fabricate detailed objects with higher resolution than material extrusion 3D printing systems.\u0000\u0000\u0000Design/methodology/approach\u0000In this paper, several photocurable conducting resins were prepared for DIW and DLP additive manufacturing. These resins were then cured using 405 nm near UV light to create intrinsically conductive polymer (ICP) composites. The electrochemical properties of these composites were analysed, and the effect of co-monomer choice and crosslinking density was determined. These results determined a suitable resin for subsequent additive manufacture using DIW and DLP. These 3D printing techniques were used to develop flexible conducting devices of submillimetre resolution that were fabricated with unmodified, commercially available 3D printers.\u0000\u0000\u0000Findings\u0000Cyclic voltammetry and volume conductivity analysis of the conducting resins determined the most conductive resin formula for 3D printing. Conductive devices were fabricated using the two 3D printing techniques. A multimaterial soft conducting device was fabricated using DIW, and each conducting component was insulated from its neighbours. DLP was used to fabricate a soft conducting device with good XY resolution with a minimum feature size of 0.2 mm. All devices were prepared in unmodified commercially available 3D printers.\u0000\u0000\u0000Practical implications\u0000These findings have value in the development of soft robotics, artificial muscles and wearable sensors. In addition, this work highlights techniques for DIW and DLP additive manufacturing.\u0000\u0000\u0000Originality/value\u0000Several original conducting resin formulae were developed for use in two 3D printing systems. The resulting 3D-printed composites are soft and flexible while maintaining their conductive properties. These findings are of value to both polymer chemists and to the field of additive manufacturing.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42233556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}