Abdul Samad Rafique, Adnan Munir, Numan Ghazali, Muhammad Naveed Ahsan, Aqeel Ahsan Khurram
{"title":"Correlation between the part quality, strength and surface roughness of material extrusion process","authors":"Abdul Samad Rafique, Adnan Munir, Numan Ghazali, Muhammad Naveed Ahsan, Aqeel Ahsan Khurram","doi":"10.1108/rpj-10-2023-0347","DOIUrl":"https://doi.org/10.1108/rpj-10-2023-0347","url":null,"abstract":"\u0000Purpose\u0000The purpose of this study was to develop a correlation between the properties of acrylonitrile butadiene styrene parts 3D printed by material extrusion (MEX) process.\u0000\u0000\u0000Design/methodology/approach\u0000The two MEX parameters and their values have been selected by design of experiment method. Three properties of MEX parts, i.e. strength (tensile and three-point bending), surface roughness and the dimensional accuracy, are studied at different build speeds (35 mm/s, 45 mm/s and 55 mm/s) and the layer heights (0.06 mm, 0.10 mm and 0.15 mm).\u0000\u0000\u0000Findings\u0000The results show that tensile strength and three-point bending strength both increase with the decrease in build speed and the layer height. The artifact selected for dimensional accuracy test shows higher accuracy of the features when 3D printed with 0.06 mm layer height at 35 mm/s build speed as compared to those of higher layer heights and build speeds. The optical images of the 3D-printed specimen reveal that lower build speed and the layer height promote higher inter-layer diffusion that has the effect of strong bonding between the layers and, as a result, higher strength of the specimen. The surface roughness values also have direct relation with the build speed and the layer height.\u0000\u0000\u0000Originality/value\u0000The whole experiments demonstrate that the part quality, surface roughness and the mechanical strength are correlated and depend on the build speed and the layer height.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"10 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139438960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An investigation into the mechanisms that influence laser sintered polyamide-12 top surfaces","authors":"James Tarver, Kieran Nar, Candice Majewski","doi":"10.1108/rpj-09-2023-0317","DOIUrl":"https://doi.org/10.1108/rpj-09-2023-0317","url":null,"abstract":"\u0000Purpose\u0000The purpose of this paper is to elucidate the extent to which the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion influence the top surface topographies of laser sintered polyamide (PA12) components.\u0000\u0000\u0000Design/methodology/approach\u0000Laser sintered specimens were manufactured at varying laser parameters in accordance with a full factorial design of experiments. Focus variation microscopy was used to ascertain insight into their top surface heights and peak/valley distributions. Subsequently, regression expressions were generated to model the former with respect to applied laser parameters. Auxiliary experimental analysis was also performed to validate the proposed mechanisms and statistical models.\u0000\u0000\u0000Findings\u0000Within the parameter range tested, this work found the root mean square (Sq) and skewness (Ssk) roughness responses of laser sintered PA12 top surfaces to be inversely related to one another, and both also principally influenced by beam spacing. Furthermore, it was demonstrated that using optimised laser parameters (to promote polymer melt dispersion) and building without finish layers (to avert subsequent powder particle adhesion) reduced the mean Sq roughness of resultant topographies by 30.8% and 47.9% relative to standard laser sintered PA12 top surfaces, respectively.\u0000\u0000\u0000Practical implications\u0000The scope to which laser sintered PA12 top surfaces can be modified was highlighted.\u0000\u0000\u0000Originality/value\u0000This research demonstrated the impact the mechanisms of polymer melt viscous flow and finish layer powder particle adhesion have on laser sintered PA12 top surfaces.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"38 19","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunfu Wu, Guorui Ye, Yonghong Zhao, Baowen Ye, Tao Wang, Liangmo Wang, Zeming Zhang
{"title":"Experimental and numerical study of in-plane uniaxial compression response of PU foam filled aluminum arrowhead auxetic honeycomb","authors":"Chunfu Wu, Guorui Ye, Yonghong Zhao, Baowen Ye, Tao Wang, Liangmo Wang, Zeming Zhang","doi":"10.1108/rpj-08-2023-0267","DOIUrl":"https://doi.org/10.1108/rpj-08-2023-0267","url":null,"abstract":"\u0000Purpose\u0000Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper aims to propose a novel auxetic honeycomb structure manufactured using selective laser melting and study the enhanced mechanical performance when subjected to in-plane compression loading.\u0000\u0000\u0000Design/methodology/approach\u0000A novel composite structure was designed and fabricated on the basis of an arrowhead auxetic honeycomb and filled with polyurethane foam. The deformation mechanism and mechanical responses of the structure with different structural parameters were investigated experimentally and numerically. With the verified simulation models, the effects of parameters on compression strength and energy absorption characteristics were further discussed through parametric analysis.\u0000\u0000\u0000Findings\u0000A good agreement was achieved between the experimental and simulation results, showing an evidently enhanced compression strength and energy absorption capacity. The interaction between the auxetic honeycomb and foam reveals to exploit a reinforcement effect on the compression performance. The parametric analysis indicates that the composite with smaller included angel and higher foam density exhibits higher plateau stress and better specific energy absorption, while increasing strut thickness is undesirable for high energy absorption efficiency.\u0000\u0000\u0000Originality/value\u0000The results of this study served to demonstrate an enhanced mechanical performance for the foam filled auxetic honeycomb, which is expected to be exploited with applications in aerospace, automobile, civil engineering and protective devices. The findings of this study can provide numerical and experimental references for the design of structural parameters.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"4 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139443599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Guerrero-Vacas, Jaime Gómez-Castillo, Ó. Rodríguez-Alabanda
{"title":"Manufacture of thermoplastic molds by fused filament fabrication 3D printing for rapid prototyping of polyurethane foam molded products","authors":"G. Guerrero-Vacas, Jaime Gómez-Castillo, Ó. Rodríguez-Alabanda","doi":"10.1108/rpj-03-2023-0085","DOIUrl":"https://doi.org/10.1108/rpj-03-2023-0085","url":null,"abstract":"Purpose Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process. Design/methodology/approach PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles. Findings PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one. Originality/value The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"10 9","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139124803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernando Peña, J. C. Rico, P. Zapico, G. Valiño, Sabino Mateos
{"title":"A layerwise geometric error compensation procedure for additive manufacturing","authors":"Fernando Peña, J. C. Rico, P. Zapico, G. Valiño, Sabino Mateos","doi":"10.1108/rpj-04-2023-0144","DOIUrl":"https://doi.org/10.1108/rpj-04-2023-0144","url":null,"abstract":"\u0000Purpose\u0000The purpose of this paper is to provide a new procedure for in-plane compensation of geometric errors that often appear in the layers deposited by an additive manufacturing (AM) process when building a part, regardless of the complexity of the layer geometry.\u0000\u0000\u0000Design/methodology/approach\u0000The procedure is based on comparing the real layer contours to the nominal ones extracted from the STL model of the part. Considering alignment and form deviations, the compensation algorithm generates new compensated contours that match the nominal ones as closely as possible. To assess the compensation effectiveness, two case studies were analysed. In the first case, the parts were not manufactured, but the distortions were simulated using a predictive model. In the second example, the test part was actually manufactured, and the distortions were measured on a coordinate measuring machine.\u0000\u0000\u0000Findings\u0000The geometric deviations detected in both case studies, as evaluated by various quality indicators, reduced significantly after applying the compensation procedure, meaning that the compensated and nominal contours were better matched both in shape and size.\u0000\u0000\u0000Research limitations/implications\u0000Although large contours showed deviations close to zero, dimensional overcompensation was observed when applied to small contours. The compensation procedure could be enhanced if the applied compensation factor took into account the contour size of the analysed layer and other geometric parameters that could have an influence.\u0000\u0000\u0000Originality/value\u0000The presented method of compensation is applicable to layers of any shape obtained in any AM process.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"63 9","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139452484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shrutika Sharma, Vishal Gupta, D. Mudgal, Vishal Srivastava
{"title":"Machine learning for forecasting the biomechanical behavior of orthopedic bone plates fabricated by fused deposition modeling","authors":"Shrutika Sharma, Vishal Gupta, D. Mudgal, Vishal Srivastava","doi":"10.1108/rpj-02-2023-0042","DOIUrl":"https://doi.org/10.1108/rpj-02-2023-0042","url":null,"abstract":"Purpose Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates. Design/methodology/approach The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination (R2) and mean absolute error (MAE). Findings Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments. Research limitations/implications The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study. Originality/value This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"10 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139128984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fiber reinforced additive manufacturing: structurally motivated print orientation and sequential topology optimization of anisotropic material","authors":"Noah Ray, Il Yong Kim","doi":"10.1108/rpj-08-2023-0276","DOIUrl":"https://doi.org/10.1108/rpj-08-2023-0276","url":null,"abstract":"Purpose Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components. Design/methodology/approach This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation. Findings Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design. Originality/value Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" 32","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139142768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raghad Ahmed Alaloosi, O. Çomaklı, Mustafa Yazıcı, Ziad A. Taha
{"title":"Effect of scan speed on corrosion and tribocorrosion properties of cobalt-chromium alloy in situ produced by selective laser melting","authors":"Raghad Ahmed Alaloosi, O. Çomaklı, Mustafa Yazıcı, Ziad A. Taha","doi":"10.1108/rpj-02-2023-0068","DOIUrl":"https://doi.org/10.1108/rpj-02-2023-0068","url":null,"abstract":"Purpose This paper aims to investigate the influence of scan speed on the corrosion and tribocorrosion features of the CoCrMoW samples fabricated via the selective laser melting (SLM) process. Design/methodology/approach CoCrMoW samples were produced by SLM at different scan speeds. Produced samples were made via structural surveys (X-ray diffraction examinations and scanning electron microscopic analyses), hardness measurements and electrochemical and tribocorrosion experiments. Findings Outcomes displayed that the corrosion and tribocorrosion properties of CoCrMoW alloy were significantly influenced by scanning speeds. Also, these properties of the alloy increased with increasing scanning speeds. CoCrMoW samples produced at a laser scan speed of 1,000 mm/s showed the best resistance to corrosion and tribocorrosion. This could be related to the high hardness and low grain structure of the fabricated samples. Originality/value This paper may be a practical reference and offers insight into the effect of scanning speeds on the increase of hardness, tribological and corrosion performance of CoCrMoW alloys. This study can help in the further advancement of cobalt-chromium alloy in situ produced by SLM for both electrochemical and tribocorrosion behavior for biomedical applications.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"70 9","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139155251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Ghasempour-Mouziraji, Daniel Afonso, Saman Hosseinzadeh, Constantinos Goulas, Mojtaba Najafizadeh, Morteza Hosseinzadeh, D.D. Ganji, Ricardo Alves de Sousa
{"title":"Modeling the effect of processing parameters on temperature history in Directed Energy Deposition: an analytical and finite element approach","authors":"M. Ghasempour-Mouziraji, Daniel Afonso, Saman Hosseinzadeh, Constantinos Goulas, Mojtaba Najafizadeh, Morteza Hosseinzadeh, D.D. Ganji, Ricardo Alves de Sousa","doi":"10.1108/rpj-05-2023-0165","DOIUrl":"https://doi.org/10.1108/rpj-05-2023-0165","url":null,"abstract":"\u0000Purpose\u0000The purpose of this paper is to assess the feasibility of analytical models, specifically the radial basis function method, Akbari–Ganji method and Gaussian method, in conjunction with the finite element method. The aim is to examine the impact of processing parameters on temperature history.\u0000\u0000\u0000Design/methodology/approach\u0000Through analytical investigation and finite element simulation, this research examines the influence of processing parameters on temperature history. Simufact software with a thermomechanical approach was used for finite element simulation, while radial basis function, Akbari–Ganji and Gaussian methods were used for analytical modeling to solve the heat transfer differential equation.\u0000\u0000\u0000Findings\u0000The accuracy of both finite element and analytical methods was validated with about 90%. The findings revealed direct relationships between thermal conductivity (from 100 to 200), laser power (from 400 to 800 W), heat source depth (from 0.35 to 0.75) and power absorption coefficient (from 0.4 to 0.8). Increasing the values of these parameters led to higher temperature history. On the other hand, density (from 7,600 to 8,200), emission coefficient (from 0.5 to 0.7) and convective heat transfer (from 35 to 90) exhibited an inverse relationship with temperature history.\u0000\u0000\u0000Originality/value\u0000The application of analytical modeling, particularly the utilization of the Akbari–Ganji, radial basis functions and Gaussian methods, showcases an innovative approach to studying directed energy deposition. This analytical investigation offers an alternative to relying solely on experimental procedures, potentially saving time and resources in the optimization of DED processes.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"37 13","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced-pixel strategy for wire arc additive manufacturing trajectory planning: operational efficiency and effectiveness analyses","authors":"Rafael Pereira Ferreira, L. Vilarinho, A. Scotti","doi":"10.1108/rpj-12-2022-0413","DOIUrl":"https://doi.org/10.1108/rpj-12-2022-0413","url":null,"abstract":"\u0000Purpose\u0000This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies.\u0000\u0000\u0000Design/methodology/approach\u0000For the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness).\u0000\u0000\u0000Findings\u0000The results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness.\u0000\u0000\u0000Originality/value\u0000This paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"63 11","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}