线弧增材制造轨迹规划的增强型像素策略:运行效率和效果分析

IF 3.4 4区 工程技术 Q1 ENGINEERING, MECHANICAL
Rafael Pereira Ferreira, L. Vilarinho, A. Scotti
{"title":"线弧增材制造轨迹规划的增强型像素策略:运行效率和效果分析","authors":"Rafael Pereira Ferreira, L. Vilarinho, A. Scotti","doi":"10.1108/rpj-12-2022-0413","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies.\n\n\nDesign/methodology/approach\nFor the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness).\n\n\nFindings\nThe results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness.\n\n\nOriginality/value\nThis paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"63 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced-pixel strategy for wire arc additive manufacturing trajectory planning: operational efficiency and effectiveness analyses\",\"authors\":\"Rafael Pereira Ferreira, L. Vilarinho, A. Scotti\",\"doi\":\"10.1108/rpj-12-2022-0413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies.\\n\\n\\nDesign/methodology/approach\\nFor the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness).\\n\\n\\nFindings\\nThe results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness.\\n\\n\\nOriginality/value\\nThis paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.\\n\",\"PeriodicalId\":20981,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":\"63 11\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-12-2022-0413\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-12-2022-0413","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的 本研究旨在提出并评估基本像素算法(一种生成填充整个表面的连续轨迹的策略)在提高性能方面取得的进展。设计/方法/途径对于第一个目标,建议的方法是应用在基本像素策略中提出的改进,在三个示范部件上进行测试,并使用距离轨迹标准对性能进行统计评估。第二个目标是比较增强型像素策略与传统策略在轨迹距离、构建时间、弧线起始和停止次数(运行效率)以及针对零件标称几何形状(运行效率)方面的性能。在运行效率方面,采用增强型像素策略生成的零件的尺寸偏差低于所研究的其他策略。因此,增强型像素策略似乎是构建更复杂的可打印部件并提供运行效率和效果的良好候选方案。 原创性/价值 本文介绍了基本像素策略(一种空间填充策略)的演变,在算法中引入了新的元素,并证明了该策略性能的提高。本文还对增强型像素策略与传统策略在运行效率和效果方面进行了有趣的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced-pixel strategy for wire arc additive manufacturing trajectory planning: operational efficiency and effectiveness analyses
Purpose This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies. Design/methodology/approach For the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness). Findings The results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness. Originality/value This paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rapid Prototyping Journal
Rapid Prototyping Journal 工程技术-材料科学:综合
CiteScore
8.30
自引率
10.30%
发文量
137
审稿时长
4.6 months
期刊介绍: Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area. -Benchmarking – certification and qualification in AM- Mass customisation in AM- Design for AM- Materials aspects- Reviews of processes/applications- CAD and other software aspects- Enhancement of existing processes- Integration with design process- Management implications- New AM processes- Novel applications of AM parts- AM for tooling- Medical applications- Reverse engineering in relation to AM- Additive & Subtractive hybrid manufacturing- Industrialisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信