Regenerative Biomaterials最新文献

筛选
英文 中文
Bone targeted lipoplex loaded Three-Dimensional bioprinting bilayer scaffold enhanced bone regeneration 骨靶向脂联素负载三维生物打印双层支架促进骨再生
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-03 DOI: 10.1093/rb/rbae055
Woo-Jin Kim, Jeong-Hyun Ryu, Ji Won Kim, Ki-Tae Kim, Hye-rim Shin, H. Yoon, Hyun-Mo Ryoo, Young-Dan Cho
{"title":"Bone targeted lipoplex loaded Three-Dimensional bioprinting bilayer scaffold enhanced bone regeneration","authors":"Woo-Jin Kim, Jeong-Hyun Ryu, Ji Won Kim, Ki-Tae Kim, Hye-rim Shin, H. Yoon, Hyun-Mo Ryoo, Young-Dan Cho","doi":"10.1093/rb/rbae055","DOIUrl":"https://doi.org/10.1093/rb/rbae055","url":null,"abstract":"\u0000 Clinical bone-morphogenetic protein 2 (BMP2) treatment for bone regeneration, often resulting in complications like soft tissue inflammation and ectopic ossification due to high dosages and non-specific delivery systems, necessitates research into improved biomaterials for better BMP2 stability and retention. To tackle this challenge, we introduced a groundbreaking bone-targeted, lipoplex-loaded, three-dimensional bioprinted bilayer scaffold, termed the polycaprolactone-bioink-nanoparticle (PBN) scaffold, aimed at boosting bone regeneration. We encapsulated BMP2 within the fibroin nanoparticle based lipoplex (Fibroplex) and functionalized it with DSS6 for bone tissue-specific targeting. 3D printing technology enables customized, porous PCL scaffolds for bone healing and soft tissue growth, with a two-step bioprinting process creating a cellular lattice structure and a bioink grid using gelatin-alginate hydrogel and DSS6-Fibroplex, shown to support effective nutrient exchange and cell growth at specific pore sizes. The PBN scaffold is predicted through in silico analysis to exhibit biased BMP2 release between bone and soft tissue, a finding validated by in vitro osteogenic differentiation assays. The PBN scaffold was evaluated for critical calvarial defects, focusing on sustained BMP2 delivery, prevention of soft tissue cell infiltration, and controlled fiber membrane pore size in vivo. The PBN scaffold demonstrated a more than eight times longer BMP2 release time than that of the collagen sponge, promoting osteogenic differentiation and bone regeneration in a calvarial defect animal. Our findings suggest that the PBN scaffold enhanced the local concentration of BMP2 in bone defects through sustained release and improved the spatial arrangement of bone formation, thereby reducing the risk of heterotopic ossification.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphenols-based intelligent oral barrier membranes for periodontal bone defect reconstruction. 用于牙周骨缺损重建的基于多酚的智能口腔屏障膜。
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-05-28 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae058
Enni Chen, Tianyou Wang, Zhiyuan Sun, Zhipeng Gu, Shimeng Xiao, Yi Ding
{"title":"Polyphenols-based intelligent oral barrier membranes for periodontal bone defect reconstruction.","authors":"Enni Chen, Tianyou Wang, Zhiyuan Sun, Zhipeng Gu, Shimeng Xiao, Yi Ding","doi":"10.1093/rb/rbae058","DOIUrl":"10.1093/rb/rbae058","url":null,"abstract":"<p><p>Periodontitis-induced periodontal bone defects significantly impact patients' daily lives. The guided tissue regeneration and guided bone regeneration techniques, which are based on barrier membranes, have brought hope for the regeneration of periodontal bone defects. However, traditional barrier membranes lack antimicrobial properties and cannot effectively regulate the complex oxidative stress microenvironment in periodontal bone defect areas, leading to unsatisfactory outcomes in promoting periodontal bone regeneration. To address these issues, our study selected the collagen barrier membrane as the substrate material and synthesized a novel barrier membrane (PO/4-BPBA/Mino@COL, PBMC) with an intelligent antimicrobial coating through a simple layer-by-layer assembly method, incorporating reactive oxygen species (ROS)-scavenging components, commercial dual-functional linkers and antimicrobial building blocks. Experimental results indicated that PBMC exhibited good degradability, hydrophilicity and ROS-responsiveness, allowing for the slow and controlled release of antimicrobial drugs. The outstanding antibacterial, antioxidant and biocompatibility properties of PBMC contributed to resistance to periodontal pathogen infection and regulation of the oxidative balance, while enhancing the migration and osteogenic differentiation of human periodontal ligament stem cells. Finally, using a rat periodontal bone defect model, the therapeutic effect of PBMC in promoting periodontal bone regeneration under infection conditions was confirmed. In summary, the novel barrier membranes designed in this study have significant potential for clinical application and provide a reference for the design of future periodontal regenerative functional materials.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An injectable magnesium coordinated phosphate chitosan-based hydrogel loaded with vancomycin for antibacterial and osteogenesis in the treatment of osteomyelitis 一种载入万古霉素的可注射磷酸镁配位壳聚糖水凝胶,用于治疗骨髓炎的抗菌和成骨作用
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-05-25 DOI: 10.1093/rb/rbae049
Peng Zhang, Tiehua Wang, Junyu Qian, Haotian Qin, Peng Liu, Ao Xiong, Anjaneyulu Udduttula, Deli Wang, Hui Zeng, Yingqi Chen
{"title":"An injectable magnesium coordinated phosphate chitosan-based hydrogel loaded with vancomycin for antibacterial and osteogenesis in the treatment of osteomyelitis","authors":"Peng Zhang, Tiehua Wang, Junyu Qian, Haotian Qin, Peng Liu, Ao Xiong, Anjaneyulu Udduttula, Deli Wang, Hui Zeng, Yingqi Chen","doi":"10.1093/rb/rbae049","DOIUrl":"https://doi.org/10.1093/rb/rbae049","url":null,"abstract":"\u0000 Microbial infections of bones, particularly after joint replacement surgery, are a common occurrence in clinical settings and often lead to osteomyelitis (OM). Unfortunately, current treatment approaches for OM are not satisfactory. To address this issue, this study focuses on the development and evaluation of an injectable magnesium oxide (MgO) nanoparticle-coordinated phosphocreatine-grafted chitosan hydrogel (CMPMg-VCM) loaded with varying amounts of vancomycin (VCM) for the treatment of OM. The results demonstrate that the loading of VCM does not affect the formation of the injectable hydrogel, and the MgO-incorporated hydrogel exhibits anti-swelling properties. The release of VCM from the hydrogel effectively kills staphylococcus aureus bacteria, with CMPMg-VCM (50) showing the highest antibacterial activity even after prolonged immersion in PBS solution for 12 days. Importantly, all the hydrogels are non-toxic to MC3T3-E1 cells and promote osteogenic differentiation through the early secretion of alkaline phosphatase and calcium nodule formation. Furthermore, in vivo experiments using a rat OM model reveal that the CMPMg-VCM hydrogel effectively kills and inhibits bacterial growth, while also protecting the infected bone from osteolysis. These beneficial properties are attributed to the burst release of VCM, which disrupts bacterial biofilm, as well as the release of Mg ions and hydroxyl by the degradation of MgO nanoparticles, which inhibits bacterial growth and prevents osteolysis. Overall, the CMPMg-VCM hydrogel exhibits promising potential for the treatment of microbial bone infections.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141098324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting cell proliferation and collagen production with ascorbic acid 2-phosphate -releasing poly(l-lactide-co-epsilon-caprolactone) membranes for treating pelvic organ prolapse 用释放抗坏血酸-2-磷酸的聚(l-内酯-环己基内酯)膜促进细胞增殖和胶原蛋白生成,治疗盆腔器官脱垂
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-05-24 DOI: 10.1093/rb/rbae060
Alma Kurki, Kaarlo Paakinaho, Markus Hannula, Sanna Karjalainen, Kirsi Kuismanen, Jari Hyttinen, Susanna Miettinen, Reetta Sartoneva
{"title":"Promoting cell proliferation and collagen production with ascorbic acid 2-phosphate -releasing poly(l-lactide-co-epsilon-caprolactone) membranes for treating pelvic organ prolapse","authors":"Alma Kurki, Kaarlo Paakinaho, Markus Hannula, Sanna Karjalainen, Kirsi Kuismanen, Jari Hyttinen, Susanna Miettinen, Reetta Sartoneva","doi":"10.1093/rb/rbae060","DOIUrl":"https://doi.org/10.1093/rb/rbae060","url":null,"abstract":"\u0000 Pelvic organ prolapse (POP) afflicts millions of women globally. In POP, the weakened support of the pelvic floor results in the descent of pelvic organs into the vagina, causing a feeling of bulging, problems in urination, defecation and/or sexual function. However, the existing surgical repair methods for relapsed POP remain insufficient, highlighting the urgent need for more effective alternatives. Collagen is an essential component in pelvic floor tissues providing structural support, and its production is controlled by ascorbic acid. Therefore, we investigated novel ascorbic acid 2-phosphate (A2P) -releasing poly(l-lactide-co-epsilon-caprolactone) (PLCLA2P) membranes in vitro to promote cell proliferation and extracellular matrix protein production to strengthen the natural support of the pelvic fascia for POP applications. We analysed the mechanical properties and the impact of PLCLA2P on cellular responses through cell culture analysis using human vaginal fibroblasts (hVFs) and human adipose-derived stem/stromal cells (hASCs) compared to PLCL. In addition, the A2P release from PLCLA2P membranes was assessed in vitro. The PLCLA2P demonstrated slightly lower tensile strength (2.2 ± 0.4 MPa) compared to PLCL (3.7 ± 0.6 MPa) for the first four weeks in vitro. The A2P was most rapidly released during the first 48 hours of in vitro incubation. Our findings demonstrated significantly increased proliferation and collagen production of both hVFs and hASCs on A2P -releasing PLCLA2P compared to PLCL. In addition, extracellular collagen type I fibres were detected in hVFs, suggesting enhanced collagen maturation on PLCLA2P. Moreover, increased extracellular matrix protein expression was detected on PLCLA2P in both hVFs and hASCs compared to plain PLCL. In conclusion, these findings highlight the potential of PLCLA2P as a promising candidate for promoting tissue regeneration in applications aimed for POP tissue engineering applications.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yolk-Shelled silver nanowire@amorphous Metal-Organic framework for controlled drug delivery and Light-Promoting infected wound healing 卵黄壳银纳米线@非晶态金属有机框架用于控制药物输送和光促进感染伤口愈合
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-05-22 DOI: 10.1093/rb/rbae056
Yueyan Yang, Xu Sun, Shengyan Wang, Zhe Tang, Siyuan Luo, Jianjun Shi, Xiaolu Zhuo, Jinjin Zhu, Han Zhang, Xiangdong Kong
{"title":"Yolk-Shelled silver nanowire@amorphous Metal-Organic framework for controlled drug delivery and Light-Promoting infected wound healing","authors":"Yueyan Yang, Xu Sun, Shengyan Wang, Zhe Tang, Siyuan Luo, Jianjun Shi, Xiaolu Zhuo, Jinjin Zhu, Han Zhang, Xiangdong Kong","doi":"10.1093/rb/rbae056","DOIUrl":"https://doi.org/10.1093/rb/rbae056","url":null,"abstract":"\u0000 Bacteria-infected wounds healing has been greatly hindered by antibiotic resistance and persistent inflammation. It is crucial to develop multifunctional nanocomposites that possess effective antibacterial properties and can simultaneously accelerate the wound healing process to overcome the above challenges. Herein, we prepared a yolk-shell structured Ag nanowires (NWs)@amorphous hollow ZIF-67 by etching ZIF-67 onto the Ag NWs for infected wound healing for the first time. The etched hollow structure of amorphous ZIF-67 in the nanocomposite makes it a promising platform for loading healing-promoting drugs. We extensively studied the antibacterial and healing-promoting properties of the curcumin (CCM)-loaded nanocomposite (Ag NWs@C-HZ67). Ag NWs, being noble metal materials with plasmonic effects, can absorb a broad range of natural light and convert it to thermal energy. This photothermal conversion further improves the release of antibacterial components and wound healing drugs when exposed to light. During the healing process of an infected wound, Ag and Co ions were released from Ag NWs@C-HZ67 upon direct contact with the wound exudate and under the influence of light irradiation. Simultaneously, the loaded CCM leaked out to repair the infected wound. The minimum inhibitory concentrations of the Ag NWs@C-HZ67 groups against E. coli and S. aureus bacteria decreased to 3 and 3 μg mL−1 when exposed to white light. Furthermore, an in vivo assessment of infected wound healing demonstrated that combining Ag NWs@C-HZ67 with light significantly accelerated the wound healing process, achieving 70% healing by the 6th day and almost complete healing by the 8th day. This advanced nanocomposite, consisting of components that possess antibacterial and growth-promoting properties, offers a safe, effective, and clinically-translatable solution for accelerating the healing process of infected wounds.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mussel inspired 3D elastomer enabled rapid calvarial bone regeneration through recruiting more osteoprogenitors from the dura mater 受贻贝启发的三维弹性体通过从硬脑膜招募更多的造骨细胞实现了腓骨的快速再生
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-05-22 DOI: 10.1093/rb/rbae059
Xuqiao Wang, Chaoqun Ma, Xinchi Zhang, Pingping Yuan, Yujiao Wang, Mingdi Fu, Zheqian Zhang, Ruiying Shi, Na Wei, Juncheng Wang, Wei Wu
{"title":"Mussel inspired 3D elastomer enabled rapid calvarial bone regeneration through recruiting more osteoprogenitors from the dura mater","authors":"Xuqiao Wang, Chaoqun Ma, Xinchi Zhang, Pingping Yuan, Yujiao Wang, Mingdi Fu, Zheqian Zhang, Ruiying Shi, Na Wei, Juncheng Wang, Wei Wu","doi":"10.1093/rb/rbae059","DOIUrl":"https://doi.org/10.1093/rb/rbae059","url":null,"abstract":"\u0000 Currently, the successful healing of critical-sized calvarial bone defects remains a considerable challenge. The immune response plays a key role in regulating bone regeneration after material grafting. Previous studies mainly focused on the relationship between macrophages and bone marrow mesenchymal stem cells (BMSCs), while dural cells were recently found to play a vital role in the calvarial bone healing. In this study, a series of 3D elastomers with different proportions of polycaprolactone (PCL) and poly (glycerol sebacate) (PGS) were fabricated, which were further supplemented with polydopamine (PDA) coating. The physicochemical properties of the PCL/PGS and PCL/PGS/PDA grafts were measured, and then they were implanted as filling materials for 8 mm calvarial bone defects. The results showed that a matched and effective PDA interface formed on a well-proportioned elastomer, which effectively modulated the polarization of M2 macrophages and promoted the recruitment of dural cells to achieve full-thickness bone repair through both intramembranous and endochondral ossification. Single-cell RNA sequencing analysis revealed the predominance of dural cells during bone healing and their close relationship with macrophages. The findings illustrated that the crosstalk between dural cells and macrophages determined the vertical full-thickness bone repair for the first time, which may be the new target for designing bone grafts for calvarial bone healing.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tannic acid and silicate-functionalized polyvinyl alcohol-hyaluronic acid hydrogel for infected diabetic wound healing. 用于感染性糖尿病伤口愈合的单宁酸和硅酸盐功能化聚乙烯醇-透明质酸水凝胶。
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-05-13 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae053
Zhentian Diao, Longkang Li, Huan Zhou, Lei Yang
{"title":"Tannic acid and silicate-functionalized polyvinyl alcohol-hyaluronic acid hydrogel for infected diabetic wound healing.","authors":"Zhentian Diao, Longkang Li, Huan Zhou, Lei Yang","doi":"10.1093/rb/rbae053","DOIUrl":"10.1093/rb/rbae053","url":null,"abstract":"<p><p>Healing of chronic diabetic wounds is challenging due to complications of severe inflammatory microenvironment, bacterial infection and poor vascular formation. Herein, a novel injectable polyvinyl alcohol-hyaluronic acid-based composite hydrogel was developed, with tannic acid (TA) and silicate functionalization to fabricate an 'all-in-one' hydrogel PTKH. On one hand, after being locally injected into the wound site, the hydrogel underwent a gradual sol-gel transition <i>in situ</i>, forming an adhesive and protective dressing for the wound. Manipulations of rheological characteristics, mechanical properties and swelling ability of PTKH could be performed via regulating TA and silicate content in hydrogel. On the other hand, PTKH was capable of eliminating reactive oxygen species overexpression, combating infection and generating a cell-favored microenvironment for wound healing acceleration <i>in vitro</i>. Subsequent animal studies demonstrated that PTKH could greatly stimulate angiogenesis and epithelization, accompanied with inflammation and infection risk reduction. Therefore, in consideration of its impressive <i>in vitro</i> and <i>in vivo</i> outcomes, this 'all-in-one' multifunctional hydrogel may hold promise for chronic diabetic wound treatment.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and evaluation of decellularized epineurium as an anti-Adhesive biofilm in peripheral nerve repair 制备和评估脱细胞表皮脲作为外周神经修复中的抗粘连生物膜
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-05-13 DOI: 10.1093/rb/rbae054
Xiao Li, Meihan Tao, Liang Quan, Hengtong Zhang, Yuan Xin, Xixi Wu, Xinyu Fang, Jun Fan, Xiaohong Tian, Xiaohong Wang, Lili Wen, Tianhao Yu, Qiang Ao
{"title":"Preparation and evaluation of decellularized epineurium as an anti-Adhesive biofilm in peripheral nerve repair","authors":"Xiao Li, Meihan Tao, Liang Quan, Hengtong Zhang, Yuan Xin, Xixi Wu, Xinyu Fang, Jun Fan, Xiaohong Tian, Xiaohong Wang, Lili Wen, Tianhao Yu, Qiang Ao","doi":"10.1093/rb/rbae054","DOIUrl":"https://doi.org/10.1093/rb/rbae054","url":null,"abstract":"\u0000 Following peripheral nerve anastomosis, the anastomotic site is prone to adhesions with surrounding tissues, consequently impacting the effectiveness of nerve repair. This study explores the development and efficacy of a decellularized epineurium as an anti-adhesive biofilm in peripheral nerve repair. Firstly, the entire epineurium was extracted from fresh porcine sciatic nerves, followed by a decellularization process. The decellularization efficiency was then thoroughly assessed. Subsequently, the decellularized epineurium underwent proteomic analysis to determine the remaining bioactive components. To ensure biosafety, the decellularized epineurium underwent cytotoxicity assays, hemolysis tests, cell affinity assays, and assessments of immune response following subcutaneous implantation. Finally, the functionality of the biofilm was determined using a sciatic nerve transection and anastomosis model in rat. The result indicated that the decellularization process effectively removed cellular components from the epineurium while preserving a number of bioactive molecules, and this decellularized epineurium was effective in preventing adhesion while promoting nerve repairment and functional recovery. In conclusion, the decellularized epineurium represents a novel and promising anti-adhesion biofilm for enhancing surgical outcomes of peripheral nerve repair.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140982648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycine/alginate-based piezoelectric film consisting of a single, monolithic β-glycine spherulite towards flexible and biodegradable force sensor 基于甘氨酸/精氨酸的压电薄膜,由单片 β-甘氨酸球状石组成,用于柔性和可生物降解的力传感器
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-05-11 DOI: 10.1093/rb/rbae047
Qiaoxia Lin, Yonggang Zhang, Luhua Chen, Haoyue Zhang, Chuanfeng An, Chengze Li, Qifan Wang, Jinhui Song, Wei He, Huanan Wang
{"title":"Glycine/alginate-based piezoelectric film consisting of a single, monolithic β-glycine spherulite towards flexible and biodegradable force sensor","authors":"Qiaoxia Lin, Yonggang Zhang, Luhua Chen, Haoyue Zhang, Chuanfeng An, Chengze Li, Qifan Wang, Jinhui Song, Wei He, Huanan Wang","doi":"10.1093/rb/rbae047","DOIUrl":"https://doi.org/10.1093/rb/rbae047","url":null,"abstract":"\u0000 Development of piezoelectric biomaterials with high piezoelectric performance, while possessing excellent flexibility, biocompatibility, and biodegradability still remains a great challenge. Herein, a flexible, biocompatible and biodegradable piezoelectric β-glycine-alginate-glycerol (Gly-Alg-Glycerol) film with excellent in vitro and in vivo sensing performance was developed. Remarkably, a single, monolithic β-glycine spherulite, instead of more commonly observed multiple spherulites, was formed in alginate matrix, thereby resulting in outstanding piezoelectric property, including high piezoelectric constant (7.2 pC/N) and high piezoelectric sensitivity (1.97 mV/kPa). The Gly-Alg-Glycerol film exhibited superior flexibility, enabling complex shape-shifting, e.g. origami pigeon, 40% tensile strain, and repeated bending and folding deformation without fracture. In vitro, the flexible Gly-Alg-Glycerol film sensor could detect subtle pulse signal, sound wave, and recognize shear stress applied from different directions. In addition, we have demonstrated that the Gly-Alg-Glycerol film sensor sealed by polylactic acid and beeswax could serve as an in vivo sensor to monitor physiological pressure signals such as heartbeat, respiration, and muscle movement. Finally, the Gly-Alg-Glycerol film possessed good biocompatibility, supporting the attachment and proliferation of rat mesenchymal stromal cells, and biodegradability, thereby showing great potential as biodegradable piezoelectric biomaterials for biomedical sensing applications.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140988955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-ZnO modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair 纳米氧化锌修饰的羟基磷灰石晶须具有更强的骨传导性,可用于骨缺损修复
IF 6.7 1区 医学
Regenerative Biomaterials Pub Date : 2024-05-08 DOI: 10.1093/rb/rbae051
Penggong Wei, Ning Wang, Qiyue Zhang, Wanfeng Wang, Hui Sun, Zengqian Liu, Tingting Yan, Qiang Wang, Lihong Qiu
{"title":"Nano-ZnO modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair","authors":"Penggong Wei, Ning Wang, Qiyue Zhang, Wanfeng Wang, Hui Sun, Zengqian Liu, Tingting Yan, Qiang Wang, Lihong Qiu","doi":"10.1093/rb/rbae051","DOIUrl":"https://doi.org/10.1093/rb/rbae051","url":null,"abstract":"\u0000 Hydroxyapatite (HA) whisker (HAw) represents a distinct form of HA characterized by its high aspect ratio, offering significant potential for enhancing the mechanical properties of bone tissue engineering scaffolds. However, the limited osteoinductivity of HAw hampers its widespread application. In this investigation, we observed HAw punctured osteoblast membranes and infiltrated the cell body, resulting in mechanical damage to cells that adversely impacted osteoblast proliferation and differentiation. To address this challenge, we developed nano-zinc oxide particle-modified HAw (nano-ZnO/HAw). Acting as a reinforcing and toughening agent, nano-ZnO/HAw augmented the compressive strength and ductility of the matrix materials. At the same time, the surface modification with nano-ZnO particles improved osteoblast differentiation by reducing the mechanical damage from HAw to cells and releasing zinc ion, the two aspects collectively promoted the osteoinductivity of HAw. Encouragingly, the osteoinductive potential of 5%nano-ZnO/HAw and 10%nano-ZnO/HAw was validated in relevant rat models, demonstrating the efficacy of this approach in promoting new bone formation in vivo. Our findings underscore the role of nano-ZnO particle surface modification in enhancing the osteoinductivity of HAw from a physical standpoint, offering valuable insights into the development of bone substitutes with favorable osteoinductive properties while simultaneously bolstering matrix material strength and toughness.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141129188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信