{"title":"Biodegradable microspheres via orally deliver celastrol with ameliorated neuropathic pain in diabetes rats.","authors":"Haosen Zhao, Shurui Chen, Sen Lin, Xifan Mei","doi":"10.1093/rb/rbae087","DOIUrl":"10.1093/rb/rbae087","url":null,"abstract":"<p><p>The treatment of peripheral neuropathy resulting from diabetes primarily emphasizes neurotrophic medications. However, a growing body of clinical studies indicates that neuroinflammation plays a significant role in the pathogenesis of neuropathic pain. This has spurred active exploration of treatment strategies leveraging nanomedicine for diseases, aiming for superior therapeutic outcomes. In this context, we have developed biodegradable nanoparticles made of polylactic-co-glycolic acid, loaded with triptolide (pCel), designed to alleviate somatic cell neuropathic pain induced by diabetes. Treatment with pCel notably reduced levels of reactive oxygen species and apoptosis <i>in vitro</i>. Furthermore, the progression of streptozotocin-induced diabetes, characterized by elevated renal function indices (blood urea nitrogen, creatinine), liver function indices (bilirubin, alkaline phosphatase) and decreased levels of albumin and globulin, was mitigated following pCel administration. Importantly, oral treatment with pCel significantly inhibited mechanical allodynia and the activation of the sciatic glial cells in diabetic rats. These findings indicate that this synthetic, biodegradable nanomedicine exhibits excellent stability, biocompatibility and catalytic activity, making it a promising and innovative approach for the management of chronic pain conditions associated with diabetic neuropathy.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae087"},"PeriodicalIF":5.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Huang, Fudan Zhang, Yajing Zhang, Rong Chen, Xiaoying Lü
{"title":"Combination of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion cytotoxicity and the underlying mechanism.","authors":"Yan Huang, Fudan Zhang, Yajing Zhang, Rong Chen, Xiaoying Lü","doi":"10.1093/rb/rbae079","DOIUrl":"10.1093/rb/rbae079","url":null,"abstract":"<p><p>Biomarkers have been applied for toxicity assessment of biomaterials due to their advantages. However, research on biomarkers for biomaterials is still in its early stages. There is a lack of integrated analysis in biomarker research based on multiomics studies. Herein, we report a new approach for combining of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion (Ni<sup>2+</sup>) cytotoxicity and the underlying mechanism. Firstly, differentially expressed genes and proteins were compared to screen gene/protein pairs exhibiting consistent differential expression within the same Ni<sup>2+</sup>-treated groups. Next, metabolic pathway analysis was carried out to reveal pathways in which gene/protein pairs and metabolites showed upstream and downstream relationships. Important networks composed of gene/protein pairs, metabolites and metabolic pathways and candidate biomarkers were subsequently identified. Through expression level and function validation, the gene/protein/metabolite biomarkers were confirmed, and the underlying mechanism was revealed: Ni<sup>2+</sup> influenced the expression of the <i>Rrm2</i> gene biomarker, which subsequently affected the expression of the RRM2 protein biomarker. These changes in turn impacted the levels of uric acid and uridine metabolite biomarkers, ultimately inhibiting DNA synthesis, suppressing cell proliferation, increasing intracellular ROS levels and reducing ATP content.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae079"},"PeriodicalIF":5.6,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exosomes-based dual drug-loaded nanocarrier for targeted and multiple proliferative vitreoretinopathy therapy.","authors":"Peiyi Zhao, Jiahao Wang, Huiying Huang, Zhirong Chen, Hui Wang, Quankui Lin","doi":"10.1093/rb/rbae081","DOIUrl":"10.1093/rb/rbae081","url":null,"abstract":"<p><p>Proliferative vitreoretinopathy (PVR) is a common cause of vision loss after retinal reattachment surgery and ocular trauma. The key pathogenic mechanisms of PVR development include the proliferation, migration and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPEs) activated by the growth factors and cytokines after surgery. Although some drugs have been tried in PVR treatments as basic investigations, the limited efficacy remains an obstacle, which may be due to the single pharmacological action and lack of targeting. Herein, the anti-proliferative Daunorubicin and anti-inflammatory Dexamethasone were co-loaded in the RPEs-derived exosomes (Exos), obtaining an Exos-based dual drug-loaded nanocarrier (Exos@D-D), and used for multiple PVR therapy. Owing to the advantages of homologous Exos and the dual drug loading, Exos@D-D showed good RPEs targeting as well as improved uptake efficiency, and could inhibit the proliferation, migration, as well as EMT of RPEs effectively. The animal studies have also demonstrated that Exos@D-D effectively inhibits the production of proliferative membranes and prevents the further development of inflammation, shows significant therapeutic effects on PVR and good biocompatibility. Such Exos-based dual drug-loaded nanocarrier investigation not only provides a promising approach for multifunctional exosome drug delivery systems construction, but also has great potential in PVR clinical therapy application.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae081"},"PeriodicalIF":5.6,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxiao Wang, Min Mu, Jiazhen Yan, Bo Han, Rui Ye, Gang Guo
{"title":"3D printing materials and 3D printed surgical devices in oral and maxillofacial surgery: design, workflow and effectiveness.","authors":"Xiaoxiao Wang, Min Mu, Jiazhen Yan, Bo Han, Rui Ye, Gang Guo","doi":"10.1093/rb/rbae066","DOIUrl":"10.1093/rb/rbae066","url":null,"abstract":"<p><p>Oral and maxillofacial surgery is a specialized surgical field devoted to diagnosing and managing conditions affecting the oral cavity, jaws, face and related structures. In recent years, the integration of 3D printing technology has revolutionized this field, offering a range of innovative surgical devices such as patient-specific implants, surgical guides, splints, bone models and regenerative scaffolds. In this comprehensive review, we primarily focus on examining the utility of 3D-printed surgical devices in the context of oral and maxillofacial surgery and evaluating their efficiency. Initially, we provide an insightful overview of commonly utilized 3D-printed surgical devices, discussing their innovations and clinical applications. Recognizing the pivotal role of materials, we give consideration to suitable biomaterials and printing technology of each device, while also introducing the emerging fields of regenerative scaffolds and bioprinting. Furthermore, we delve into the transformative impact of 3D-printed surgical devices within specific subdivisions of oral and maxillofacial surgery, placing particular emphasis on their rejuvenating effects in bone reconstruction, orthognathic surgery, temporomandibular joint treatment and other applications. Additionally, we elucidate how the integration of 3D printing technology has reshaped clinical workflows and influenced treatment outcomes in oral and maxillofacial surgery, providing updates on advancements in ensuring accuracy and cost-effectiveness in 3D printing-based procedures.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae066"},"PeriodicalIF":5.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tingchao Zhang, Yichen Dou, Yang Li, Rifang Luo, Li Yang, Weiwei Zhang, Yunbing Wang, Xingdong Zhang
{"title":"Design and performance of double-layered artificial chordae.","authors":"Tingchao Zhang, Yichen Dou, Yang Li, Rifang Luo, Li Yang, Weiwei Zhang, Yunbing Wang, Xingdong Zhang","doi":"10.1093/rb/rbae076","DOIUrl":"10.1093/rb/rbae076","url":null,"abstract":"<p><p>Surgical repair with artificial chordae replacement has emerged as a standard treatment for mitral regurgitation. Expanded polytetrafluoroethylene (ePTFE) sutures are commonly employed as artificial chordae; however, they have certain limitations, such as potential long-term rupture and undesired material/tissue response. This study introduces a novel approach to artificial chordae design, termed the New Artificial Chordae (NAC), which incorporates a double-layered structure. The NAC comprises a multi-strand braided core composed of ultra-high molecular weight polyethylene (UHMWPE) fibers as the inner core, and an outer tube made of hydrophobic porous ePTFE. Compared to traditional ePTFE sutures, NAC exhibits increased flexibility, enhanced tensile strength, longer elongation and improved fatigue resistance. Moreover, NAC exhibits a more hydrophobic surface, which contributes to enhanced hemocompatibility. The study also includes <i>in vivo</i> investigations conducted on animal models to evaluate the biocompatibility and functional efficacy of the artificial chordae. These experiments demonstrate the enhanced durability and biocompatibility of the NAC, characterized by improved mechanical strength, minimal tissue response and reduced thrombus formation. These findings suggest the potential application of NAC as a prosthetic chordae replacement, offering promising prospects to address the limitations associated with current artificial chordae materials and providing novel ideas and approaches for the development of sustainable and biocompatible regenerative biomaterials.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae076"},"PeriodicalIF":5.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>In situ</i> co-deposition synthesis for collagen-Astragalus polysaccharide composite with intrafibrillar mineralization as potential biomimetic-bone repair materials.","authors":"Han Li, Ziying Guan, Liren Wei, Jian Lu, Yanfei Tan, Qingrong Wei","doi":"10.1093/rb/rbae070","DOIUrl":"10.1093/rb/rbae070","url":null,"abstract":"<p><p>A hybrid material possessing both componential and structural imitation of bone tissue is the preferable composites for bone defect repair. Inspired by the microarchitecture of native bone, this work synthesized <i>in vitro</i> a functional mineralized collagen fibril (MCF) material by utilizing the method of <i>in situ</i> co-precipitation, which was designed to proceed in the presence of Astragalus polysaccharide (APS), thus achieving APS load within the biomineralized collagen-Astragalus polysaccharide (MCAPS) fibrils. Transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electronic microscopy (SEM) identified the details of the intrafibrillar mineralization of the MCAPS fibrils, almost mimicking the secondary level of bone tissue microstructure. A relatively uniform and continuous mineral layer formed on and within all collagen fibrils and the mineral phase was identified as typical weak-crystalline hydroxyapatite (HA) with a Ca/P ratio of about 1.53. The proliferation of bone marrow-derived mesenchymal stem cells (BMSC) and mouse embryo osteoblast precursor cells (MC3T3-E1) obtained a significant promotion by MCAPS. As for the osteogenic properties of MCAPS, a distinct increase in the alkaline phosphatase (ALP) activity and the number of calcium nodules (CN) in BMSC and MC3T3-E1 was detected. The up-regulation of three osteogenic-related genes of RUNX-2, BMP-2 and OCN were confirmed via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to further verify the osteogenic performance promotion of MCAPS. A period of 14 days of culture demonstrated that MCAPS-L exhibited a preferable efficacy in enhancing ALP activity and CN quantity, as well as in promoting the expression of osteogenic-related genes over MCAPS-M and MCAPS-H, indicating that a lower dose of APS within the material of MCAPS is more appropriate for its osteogenesis promotion properties.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae070"},"PeriodicalIF":5.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myeounghoon Cha, Heyji Bak, Sun Joon Bai, Bae Hwan Lee, Jun Ho Jang
{"title":"Quadriceps recovery and pain relief in knee osteoarthritis rats by cog polydioxanone filament insertion.","authors":"Myeounghoon Cha, Heyji Bak, Sun Joon Bai, Bae Hwan Lee, Jun Ho Jang","doi":"10.1093/rb/rbae077","DOIUrl":"10.1093/rb/rbae077","url":null,"abstract":"<p><p>Quadriceps muscles play a pivotal role in knee osteoarthritis (OA) progression and symptom manifestation, particularly pain. This research investigates the therapeutic effectiveness of muscle enhancement and support therapy (MEST), a recently developed device intended for intramuscular insertion of cog polydioxanone filaments, in quadriceps restoration to alleviate OA pain. Knee OA was induced in Sprague Dawley rats via monoiodoacetate injections. MEST or sham treatment was performed in OA or Naive rat quadriceps. Pain was assessed using paw withdrawal threshold and weight bearing. Quadriceps injury and recovery via MEST were evaluated using biomarkers, tissue morphology, muscle mass, contractile force and hindlimb torque. Satellite cell and macrophage activation, along with their activators, were also assessed. Data were compared at 1- and 3-weeks post-MEST treatment (M-W1 and M-W3). MEST treatment in OA rats caused muscle injury, indicated by elevated serum aspartate transferase and creatinine kinase levels, and local β-actin changes at M-W1. This injury triggered pro-inflammatory macrophage and satellite cell activation, accompanied by heightened interleukin-6 and insulin-like growth factor-1 levels. However, by M-W3, these processes gradually shifted toward inflammation resolution and muscle restoration. This was seen in anti-inflammatory macrophage phenotypes, sustained satellite cell activation and injury markers regressing to baseline. Quadriceps recovery in mass and strength from atrophy correlated with substantial OA pain reduction at M-W3. This study suggests that MEST-induced minor muscle injury triggers macrophage and satellite cell activation, leading to recovery of atrophied quadriceps and pain relief in OA rats.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae077"},"PeriodicalIF":5.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhao Guo, Bo Li, Huixu Xie, Chenzhou Wu, Guixue Wang, Kexin Yao, Longjiang Li
{"title":"The therapeutic efficacy of different configuration nano-polydopamine drug carrier systems with photothermal synergy against head and neck squamous cell carcinoma.","authors":"Yuhao Guo, Bo Li, Huixu Xie, Chenzhou Wu, Guixue Wang, Kexin Yao, Longjiang Li","doi":"10.1093/rb/rbae073","DOIUrl":"10.1093/rb/rbae073","url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide. Considering its special anatomical site and the progressive resistance to chemotherapy drugs, the development of more effective, minimally invasive and precise treatment methods is urgently needed. Nanomaterials, given their special properties, can be used as drug carrier systems to improve the therapeutic effect and reduce the adverse effects. The drug carrier systems with photothermal effect can promote the killing of cancer cells and help overcome drug resistance through heat stress. We selected dopamine, a simple raw material, and designed and synthesized three different configurations of nano-polydopamine (nPDA) nanomaterials, including nPDA balls, nPDA plates and porous nPDA balls. In addition to the self-polymerization and self-assembly, nPDA has high photothermal conversion efficiency and can be easily modified. Moreover, we loaded cisplatin into three different configurations of nPDA, creating nPDA-cis (the nano-drug carrier system with cisplatin), and comparatively studied the properties and antitumor effects of all the nPDA and nPDA-cis materials <i>in vitro</i> and nPDA-cis <i>in vivo</i>. We found that the photothermal effect of the nPDA-cis balls drug carrier system had synergistic effect with cisplatin, resulting in excellent antitumor effect and good clinical application prospects. The comparison of the three different configurations of drug carrier systems suggested the importance of optimizing the spatial configuration design and examining the physical and chemical properties in the future development of nano-drug carrier systems. In this study, we also noted the duality and complexity of the influences of heat stress on tumors <i>in vitro</i> and <i>in vivo</i>. The specific mechanisms and the synergy with chemotherapy and immunotherapy will be an important research direction in the future.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae073"},"PeriodicalIF":5.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration.","authors":"Juncong Hong, Dongze Wu, Haitao Wang, Zhe Gong, Xinxin Zhu, Fang Chen, Zihang Wang, Mingchen Zhang, Xiumei Wang, Xiangqian Fang, Shuhui Yang, Jinjin Zhu","doi":"10.1093/rb/rbae075","DOIUrl":"10.1093/rb/rbae075","url":null,"abstract":"<p><p>Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. <i>In vitro</i> examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the <i>in vivo</i> imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae075"},"PeriodicalIF":5.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A composite PET-matrix patch enhances tendon regeneration and tendon-to-bone integration for bridging repair of the chronic massive rotator cuff tears in a rabbit model.","authors":"Yuyan Na, Hao Jue, Tian Xia, Moxin Li, Xiaoao Xue, Yinghui Hua","doi":"10.1093/rb/rbae061","DOIUrl":"10.1093/rb/rbae061","url":null,"abstract":"<p><p>In recent years, bridging repair has emerged as an effective approach for the treatment of massive rotator cuff tears (MRCTs). The objective of this study was to develop a composite patch that combines superior mechanical strength and biocompatibility and evaluate its potential for enhancing the outcomes of bridging repair for MRCTs. The composite patch, referred to as the PET-matrix patch (PM), was fabricated by immersing a plain-woven PET patch in decellularized matrix gel and utilizing the freeze-drying technique. The results demonstrated that the PM has reliable mechanical properties, with a maximum failure load of up to 480 N. The decellularized matrix sponge (DMS), present on the surface of the PM, displayed a loose and porous structure, with an average pore size of 62.51 μm and a porosity of 95.43%. <i>In vitro</i> experiments showed significant elongation of tenocytes on the DMS, with cells spanning across multiple pores and extending multiple protrusions as observed on SEM images. In contrast, tenocytes on the PET patch appeared smaller in size and lacked significant elongation. Additionally, the DMS facilitated the proliferation, migration and differentiation of tenocytes. In a rabbit model of chronic MRCTs, the PM group showed superior outcomes compared to the PET group at 4, 8 and 12 weeks after bridging repair. The PM group displayed significantly higher tendon maturing score, larger collagen diameter in the regenerated tendon and improved tendon-to-bone healing scores compared to the PET group (<i>P </i><<i> </i>0.05). Moreover, the maximum failure load of the tendon-bone complex in the PM group was significantly higher than that in the PET group (<i>P </i><<i> </i>0.05). In summary, the PM possesses reliable mechanical properties and excellent cytocompatibility, which can significantly improve the outcomes of bridging repair for chronic MRCTs in rabbits. Therefore, it holds great potential for clinical applications.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae061"},"PeriodicalIF":5.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}