{"title":"Combined magnesium and silicon ions synergistically promote functional regeneration of skeletal muscle by regulating satellite cell fate.","authors":"Hangbin Xia, Chen Yang, Huili Li, Lingwei Huang, Zhen Zeng, Runrun Chi, Ziwei Yang, Yuzen Wang, Jiang Chang, Yiren Jiao, Wenzhong Li","doi":"10.1093/rb/rbaf008","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle satellite cells (MuSCs) play a vital role in skeletal muscle regeneration. However, in intractable muscle diseases such as volumetric muscle loss (VML), the quantity and function of MuSCs are significantly reduced, severely limiting the body's inherent muscle regeneration capability. In this study, we propose a novel strategy to modulate the fate of MuSCs using a combination of bioactive magnesium (Mg) and silicon (Si) ions, sustainably delivered through magnesium silicate (MgSiO<sub>3</sub>, MS) bioceramic-based scaffolds. <i>In vitro</i>, Mg and Si ions synergistically promote the proliferation and differentiation of MuSCs. Similarly, Mg and Si ions derived from MS/poly(L-lactic acid) (MS/PLLA) composite scaffold also increase the proliferation and differentiation ability of MuSCs. Furthermore, MS/PLLA composite scaffolds facilitate the activation of MuSCs, regeneration of muscle fiber and neovascularization, while inhibiting fibrosis, thereby effectively restoring muscle function and promoting tibialis anterior muscle functional regeneration in a VML mouse model. Mechanistically, the combination of Mg and Si ions promotes the activation and proliferation of MuSCs by activating the Notch1-Hes1 pathway. Besides, the combination of Mg and Si ions also improves the differentiation of MuSCs by up-regulating Myod and Myog, and enhances fusion by up-regulating Mymk and Mymx expression. The outcomes of our research introduce a promising approach to the treatment of skeletal muscle injuries and related diseases.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf008"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Muscle satellite cells (MuSCs) play a vital role in skeletal muscle regeneration. However, in intractable muscle diseases such as volumetric muscle loss (VML), the quantity and function of MuSCs are significantly reduced, severely limiting the body's inherent muscle regeneration capability. In this study, we propose a novel strategy to modulate the fate of MuSCs using a combination of bioactive magnesium (Mg) and silicon (Si) ions, sustainably delivered through magnesium silicate (MgSiO3, MS) bioceramic-based scaffolds. In vitro, Mg and Si ions synergistically promote the proliferation and differentiation of MuSCs. Similarly, Mg and Si ions derived from MS/poly(L-lactic acid) (MS/PLLA) composite scaffold also increase the proliferation and differentiation ability of MuSCs. Furthermore, MS/PLLA composite scaffolds facilitate the activation of MuSCs, regeneration of muscle fiber and neovascularization, while inhibiting fibrosis, thereby effectively restoring muscle function and promoting tibialis anterior muscle functional regeneration in a VML mouse model. Mechanistically, the combination of Mg and Si ions promotes the activation and proliferation of MuSCs by activating the Notch1-Hes1 pathway. Besides, the combination of Mg and Si ions also improves the differentiation of MuSCs by up-regulating Myod and Myog, and enhances fusion by up-regulating Mymk and Mymx expression. The outcomes of our research introduce a promising approach to the treatment of skeletal muscle injuries and related diseases.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.