Psychological methodsPub Date : 2024-08-01Epub Date: 2023-05-11DOI: 10.1037/met0000582
Udo Boehm, Nathan J Evans, Quentin F Gronau, Dora Matzke, Eric-Jan Wagenmakers, Andrew J Heathcote
{"title":"Inclusion Bayes factors for mixed hierarchical diffusion decision models.","authors":"Udo Boehm, Nathan J Evans, Quentin F Gronau, Dora Matzke, Eric-Jan Wagenmakers, Andrew J Heathcote","doi":"10.1037/met0000582","DOIUrl":"10.1037/met0000582","url":null,"abstract":"<p><p>Cognitive models provide a substantively meaningful quantitative description of latent cognitive processes. The quantitative formulation of these models supports cumulative theory building and enables strong empirical tests. However, the nonlinearity of these models and pervasive correlations among model parameters pose special challenges when applying cognitive models to data. Firstly, estimating cognitive models typically requires large hierarchical data sets that need to be accommodated by an appropriate statistical structure within the model. Secondly, statistical inference needs to appropriately account for model uncertainty to avoid overconfidence and biased parameter estimates. In the present work, we show how these challenges can be addressed through a combination of Bayesian hierarchical modeling and Bayesian model averaging. To illustrate these techniques, we apply the popular diffusion decision model to data from a collaborative selective influence study. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"625-655"},"PeriodicalIF":7.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9796969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Psychological methodsPub Date : 2024-08-01Epub Date: 2023-02-16DOI: 10.1037/met0000558
Guillermo Vallejo, María Paula Fernández, Pablo Esteban Livacic-Rojas
{"title":"Multivariate analysis of covariance for heterogeneous and incomplete data.","authors":"Guillermo Vallejo, María Paula Fernández, Pablo Esteban Livacic-Rojas","doi":"10.1037/met0000558","DOIUrl":"10.1037/met0000558","url":null,"abstract":"<p><p>This article discusses the robustness of the multivariate analysis of covariance (MANCOVA) test for an emergent variable system and proposes a modification of this test to obtain adequate information from heterogeneous normal observations. The proposed approach for testing potential effects in heterogeneous MANCOVA models can be adopted effectively, regardless of the degree of heterogeneity and sample size imbalance. As our method was not designed to handle missing values, we also show how to derive the formulas for pooling the results of multiple-imputation-based analyses into a single final estimate. Results of simulated studies and analysis of real-data show that the proposed combining rules provide adequate coverage and power. Based on the current evidence, the two solutions suggested could be effectively used by researchers for testing hypotheses, provided that the data conform to normality. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"731-747"},"PeriodicalIF":7.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10787830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Psychological methodsPub Date : 2024-08-01Epub Date: 2023-04-13DOI: 10.1037/met0000569
Jillian C Strayhorn, Linda M Collins, David J Vanness
{"title":"A posterior expected value approach to decision-making in the multiphase optimization strategy for intervention science.","authors":"Jillian C Strayhorn, Linda M Collins, David J Vanness","doi":"10.1037/met0000569","DOIUrl":"10.1037/met0000569","url":null,"abstract":"<p><p>In current practice, intervention scientists applying the multiphase optimization strategy (MOST) with a 2<i><sup>k</sup></i> factorial optimization trial use a component screening approach (CSA) to select intervention components for inclusion in an optimized intervention. In this approach, scientists review all estimated main effects and interactions to identify the important ones based on a fixed threshold, and then base decisions about component selection on these important effects. We propose an alternative posterior expected value approach based on Bayesian decision theory. This new approach aims to be easier to apply and more readily extensible to a variety of intervention optimization problems. We used Monte Carlo simulation to evaluate the performance of a posterior expected value approach and CSA (automated for simulation purposes) relative to two benchmarks: random component selection, and the classical treatment package approach. We found that both the posterior expected value approach and CSA yielded substantial performance gains relative to the benchmarks. We also found that the posterior expected value approach outperformed CSA modestly but consistently in terms of overall accuracy, sensitivity, and specificity, across a wide range of realistic variations in simulated factorial optimization trials. We discuss implications for intervention optimization and promising future directions in the use of posterior expected value to make decisions in MOST. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"656-678"},"PeriodicalIF":7.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9367545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Psychological methodsPub Date : 2024-08-01Epub Date: 2023-07-27DOI: 10.1037/met0000594
Lijin Zhang, Xinya Liang
{"title":"Bayesian regularization in multiple-indicators multiple-causes models.","authors":"Lijin Zhang, Xinya Liang","doi":"10.1037/met0000594","DOIUrl":"10.1037/met0000594","url":null,"abstract":"<p><p>Integrating regularization methods into structural equation modeling is gaining increasing popularity. The purpose of regularization is to improve variable selection, model estimation, and prediction accuracy. In this study, we aim to: (a) compare Bayesian regularization methods for exploring covariate effects in multiple-indicators multiple-causes models, (b) examine the sensitivity of results to hyperparameter settings of penalty priors, and (c) investigate prediction accuracy through cross-validation. The Bayesian regularization methods examined included: ridge, lasso, adaptive lasso, spike-and-slab prior (SSP) and its variants, and horseshoe and its variants. Sparse solutions were developed for the structural coefficient matrix that contained only a small portion of nonzero path coefficients characterizing the effects of selected covariates on the latent variable. Results from the simulation study showed that compared to diffuse priors, penalty priors were advantageous in handling small sample sizes and collinearity among covariates. Priors with only the global penalty (ridge and lasso) yielded higher model convergence rates and power, whereas priors with both the global and local penalties (horseshoe and SSP) provided more accurate parameter estimates for medium and large covariate effects. The horseshoe and SSP improved accuracy in predicting factor scores, while achieving more parsimonious models. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"679-703"},"PeriodicalIF":7.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10241486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inference with cross-lagged effects-Problems in time.","authors":"Charles C Driver","doi":"10.1037/met0000665","DOIUrl":"https://doi.org/10.1037/met0000665","url":null,"abstract":"<p><p>The interpretation of cross-effects from vector autoregressive models to infer structure and causality among constructs is widespread and sometimes problematic. I describe problems in the interpretation of cross-effects when processes that are thought to fluctuate continuously in time are, as is typically done, modeled as changing only in discrete steps (as in e.g., structural equation modeling)-zeroes in a discrete-time temporal matrix do not necessarily correspond to zero effects in the underlying continuous processes, and vice versa. This has implications for the common case when the presence or absence of cross-effects is used for inference about underlying causal processes. I demonstrate these problems via simulation, and also show that when an underlying set of processes are continuous in time, even relatively few direct causal links can result in much denser temporal effect matrices in discrete-time. I demonstrate one solution to these issues, namely parameterizing the system as a stochastic differential equation and focusing inference on the continuous-time temporal effects. I follow this with some discussion of issues regarding the switch to continuous-time, specifically regularization, appropriate measurement time lag, and model order. An empirical example using intensive longitudinal data highlights some of the complexities of applying such approaches to real data, particularly with respect to model specification, examining misspecification, and parameter interpretation. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole Walasek, Ethan S Young, Willem E Frankenhuis
{"title":"A framework for studying environmental statistics in developmental science.","authors":"Nicole Walasek, Ethan S Young, Willem E Frankenhuis","doi":"10.1037/met0000651","DOIUrl":"https://doi.org/10.1037/met0000651","url":null,"abstract":"<p><p>Psychologists tend to rely on verbal descriptions of the environment over time, using terms like \"unpredictable,\" \"variable,\" and \"unstable.\" These terms are often open to different interpretations. This ambiguity blurs the match between constructs and measures, which creates confusion and inconsistency across studies. To better characterize the environment, the field needs a shared framework that organizes descriptions of the environment over time in clear terms: as statistical definitions. Here, we first present such a framework, drawing on theory developed in other disciplines, such as biology, anthropology, ecology, and economics. Then we apply our framework by quantifying \"unpredictability\" in a publicly available, longitudinal data set of crime rates in New York City (NYC) across 15 years. This case study shows that the correlations between different \"unpredictability statistics\" across regions are only moderate. This means that regions within NYC rank differently on unpredictability depending on which definition is used and at which spatial scale the statistics are computed. Additionally, we explore associations between unpredictability statistics and measures of unemployment, poverty, and educational attainment derived from publicly available NYC survey data. In our case study, these measures are associated with mean levels in crime rates but hardly with unpredictability in crime rates. Our case study illustrates the merits of using a formal framework for disentangling different properties of the environment. To facilitate the use of our framework, we provide a friendly, step-by-step guide for identifying the structure of the environment in repeated measures data sets. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coefficients of determination measured on the same scale as the outcome: Alternatives to R² that use standard deviations instead of explained variance.","authors":"Mathias Berggren","doi":"10.1037/met0000681","DOIUrl":"https://doi.org/10.1037/met0000681","url":null,"abstract":"<p><p>The coefficient of determination, <i>R</i>², also called the explained variance, is often taken as a proportional measure of the relative determination of model on outcome. However, while <i>R</i>² has some attractive statistical properties, its reliance on squared variations (variances) may limit its use as an easily interpretable descriptive statistic of that determination. Here, the properties of this coefficient on the squared scale are discussed and generalized to three relative measures on the original scale. These generalizations can all be expressed as transformations of <i>R</i>², and alternatives can therefore also be calculated by plugging in related estimates, such as the adjusted <i>R</i>². The third coefficient, new for this article, and here termed the CoD<sub>SD</sub> (the coefficient of determination in terms of standard deviations), or <i>R</i><sub>π</sub> (<i>R</i>-pi), equals <i>R</i>²/(<i>R</i>²+1-<i>R</i>²). It is argued that this coefficient most usefully captures the relative determination of the model. When the contribution of the error is <i>c</i> times that of the model, the CoD<sub>SD</sub> equals 1/(1 + <i>c</i>), while <i>R</i>² equals 1/(1 + <i>c</i>²). (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niek Stevenson, Reilly J Innes, Quentin F Gronau, Steven Miletić, Andrew Heathcote, Birte U Forstmann, Scott D Brown
{"title":"Using group level factor models to resolve high dimensionality in model-based sampling.","authors":"Niek Stevenson, Reilly J Innes, Quentin F Gronau, Steven Miletić, Andrew Heathcote, Birte U Forstmann, Scott D Brown","doi":"10.1037/met0000618","DOIUrl":"10.1037/met0000618","url":null,"abstract":"<p><p>Joint modeling of decisions and neural activation poses the potential to provide significant advances in linking brain and behavior. However, methods of joint modeling have been limited by difficulties in estimation, often due to high dimensionality and simultaneous estimation challenges. In the current article, we propose a method of model estimation that draws on state-of-the-art Bayesian hierarchical modeling techniques and uses factor analysis as a means of dimensionality reduction and inference at the group level. This hierarchical factor approach can adopt any model for the individual and distill the relationships of its parameters across individuals through a factor structure. We demonstrate the significant dimensionality reduction gained by factor analysis and good parameter recovery, and illustrate a variety of factor loading constraints that can be used for different purposes and research questions, as well as three applications of the method to previously analyzed data. We conclude that this method provides a flexible and usable approach with interpretable outcomes that are primarily data-driven, in contrast to the largely hypothesis-driven methods often used in joint modeling. Although we focus on joint modeling methods, this model-based estimation approach could be used for any high dimensional modeling problem. We provide open-source code and accompanying tutorial documentation to make the method accessible to any researchers. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comparison of random forest-based missing imputation methods for covariates in propensity score analysis.","authors":"Yongseok Lee, Walter L Leite","doi":"10.1037/met0000676","DOIUrl":"https://doi.org/10.1037/met0000676","url":null,"abstract":"<p><p>Propensity score analysis (PSA) is a prominent method to alleviate selection bias in observational studies, but missing data in covariates is prevalent and must be dealt with during propensity score estimation. Through Monte Carlo simulations, this study evaluates the use of imputation methods based on multiple random forests algorithms to handle missing data in covariates: multivariate imputation by chained equations-random forest (Caliber), proximity imputation (PI), and missForest. The results indicated that PI and missForest outperformed other methods with respect to bias of average treatment effect regardless of sample size and missing mechanisms. A demonstration of these five methods with PSA to evaluate the effect of participation in center-based care on children's reading ability is provided using data from the Early Childhood Longitudinal Study, Kindergarten Class of 2010-2011. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T D Stanley, Hristos Doucouliagos, Maximilian Maier, František Bartoš
{"title":"Correcting bias in the meta-analysis of correlations.","authors":"T D Stanley, Hristos Doucouliagos, Maximilian Maier, František Bartoš","doi":"10.1037/met0000662","DOIUrl":"https://doi.org/10.1037/met0000662","url":null,"abstract":"<p><p>We demonstrate that all conventional meta-analyses of correlation coefficients are biased, explain why, and offer solutions. Because the standard errors of the correlation coefficients depend on the size of the coefficient, inverse-variance weighted averages will be biased even under ideal meta-analytical conditions (i.e., absence of publication bias, <i>p</i>-hacking, or other biases). Transformation to Fisher's <i>z</i> often greatly reduces these biases but still does not mitigate them entirely. Although all are small-sample biases (<i>n</i> < 200), they will often have practical consequences in psychology where the typical sample size of correlational studies is 86. We offer two solutions: the well-known Fisher's z-transformation and new small-sample adjustment of Fisher's that renders any remaining bias scientifically trivial. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}