Klazien de Vries, Marieke E Timmerman, Anja F Ernst, Casper J Albers
{"title":"Adjusting for nonrepresentativeness in continuous norming using multilevel regression and poststratification.","authors":"Klazien de Vries, Marieke E Timmerman, Anja F Ernst, Casper J Albers","doi":"10.1037/met0000752","DOIUrl":null,"url":null,"abstract":"<p><p>In psychological test norming, nonrepresentativeness in background variables in the normative sample can lead to bias in the normed score estimates. Because representativeness is difficult to establish in practice, adjustment methods are needed to combat this bias. As a candidate adjustment method, we investigated generalized additive models for location, scale, and shape with multilevel regression and poststratification (GAMLSS + MRP), the combination of MRP and continuous norming with GAMLSS. This adjustment method was then compared to current adjustment methods in continuous norming using weighted regression: GAMLSS + P (with poststratification) and cNORM + R (with raking). The results of our simulation showed that GAMLSS + MRP was generally more efficient than GAMLSS + P and cNORM + R. Furthermore, GAMLSS + MRP was better than the current methods at reducing bias in samples where the nonrepresentativeness was age-dependent. We argue that GAMLSS + MRP is a valid adjustment method in continuous norming and recommend this adjustment method to mitigate bias in nonrepresentative normative samples. To facilitate the use of GAMLSS + MRP in practice, we provide a step-wise approach for the implementation of GAMLSS + MRP. We illustrate this approach by deriving normed scores from the normative data of the third Schlichting language test. All analysis code for this illustration is provided. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000752","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In psychological test norming, nonrepresentativeness in background variables in the normative sample can lead to bias in the normed score estimates. Because representativeness is difficult to establish in practice, adjustment methods are needed to combat this bias. As a candidate adjustment method, we investigated generalized additive models for location, scale, and shape with multilevel regression and poststratification (GAMLSS + MRP), the combination of MRP and continuous norming with GAMLSS. This adjustment method was then compared to current adjustment methods in continuous norming using weighted regression: GAMLSS + P (with poststratification) and cNORM + R (with raking). The results of our simulation showed that GAMLSS + MRP was generally more efficient than GAMLSS + P and cNORM + R. Furthermore, GAMLSS + MRP was better than the current methods at reducing bias in samples where the nonrepresentativeness was age-dependent. We argue that GAMLSS + MRP is a valid adjustment method in continuous norming and recommend this adjustment method to mitigate bias in nonrepresentative normative samples. To facilitate the use of GAMLSS + MRP in practice, we provide a step-wise approach for the implementation of GAMLSS + MRP. We illustrate this approach by deriving normed scores from the normative data of the third Schlichting language test. All analysis code for this illustration is provided. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.