Adjusting for nonrepresentativeness in continuous norming using multilevel regression and poststratification.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Klazien de Vries, Marieke E Timmerman, Anja F Ernst, Casper J Albers
{"title":"Adjusting for nonrepresentativeness in continuous norming using multilevel regression and poststratification.","authors":"Klazien de Vries, Marieke E Timmerman, Anja F Ernst, Casper J Albers","doi":"10.1037/met0000752","DOIUrl":null,"url":null,"abstract":"<p><p>In psychological test norming, nonrepresentativeness in background variables in the normative sample can lead to bias in the normed score estimates. Because representativeness is difficult to establish in practice, adjustment methods are needed to combat this bias. As a candidate adjustment method, we investigated generalized additive models for location, scale, and shape with multilevel regression and poststratification (GAMLSS + MRP), the combination of MRP and continuous norming with GAMLSS. This adjustment method was then compared to current adjustment methods in continuous norming using weighted regression: GAMLSS + P (with poststratification) and cNORM + R (with raking). The results of our simulation showed that GAMLSS + MRP was generally more efficient than GAMLSS + P and cNORM + R. Furthermore, GAMLSS + MRP was better than the current methods at reducing bias in samples where the nonrepresentativeness was age-dependent. We argue that GAMLSS + MRP is a valid adjustment method in continuous norming and recommend this adjustment method to mitigate bias in nonrepresentative normative samples. To facilitate the use of GAMLSS + MRP in practice, we provide a step-wise approach for the implementation of GAMLSS + MRP. We illustrate this approach by deriving normed scores from the normative data of the third Schlichting language test. All analysis code for this illustration is provided. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000752","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In psychological test norming, nonrepresentativeness in background variables in the normative sample can lead to bias in the normed score estimates. Because representativeness is difficult to establish in practice, adjustment methods are needed to combat this bias. As a candidate adjustment method, we investigated generalized additive models for location, scale, and shape with multilevel regression and poststratification (GAMLSS + MRP), the combination of MRP and continuous norming with GAMLSS. This adjustment method was then compared to current adjustment methods in continuous norming using weighted regression: GAMLSS + P (with poststratification) and cNORM + R (with raking). The results of our simulation showed that GAMLSS + MRP was generally more efficient than GAMLSS + P and cNORM + R. Furthermore, GAMLSS + MRP was better than the current methods at reducing bias in samples where the nonrepresentativeness was age-dependent. We argue that GAMLSS + MRP is a valid adjustment method in continuous norming and recommend this adjustment method to mitigate bias in nonrepresentative normative samples. To facilitate the use of GAMLSS + MRP in practice, we provide a step-wise approach for the implementation of GAMLSS + MRP. We illustrate this approach by deriving normed scores from the normative data of the third Schlichting language test. All analysis code for this illustration is provided. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

利用多水平回归和后分层调整连续归一化的非代表性。
在心理测试规范中,规范样本中背景变量的非代表性会导致规范分数估计的偏差。由于在实践中难以建立代表性,因此需要调整方法来克服这种偏见。作为候选调整方法,我们研究了基于多层次回归和后分层的位置、尺度和形状的广义加性模型(GAMLSS + MRP),以及MRP和连续归一化相结合的GAMLSS。然后使用加权回归将该调整方法与当前连续归一化调整方法GAMLSS + P(后分层)和cNORM + R(耙)进行比较。我们的模拟结果表明,GAMLSS + MRP通常比GAMLSS + P和cNORM + r更有效。此外,GAMLSS + MRP在减少非代表性与年龄相关的样本偏差方面比目前的方法更好。我们认为GAMLSS + MRP是一种有效的连续规范化调整方法,并推荐这种调整方法来减轻非代表性规范样本的偏差。为了便于在实践中使用GAMLSS + MRP,我们提供了一种逐步实施GAMLSS + MRP的方法。我们通过从第三次Schlichting语言测试的规范数据中导出规范分数来说明这种方法。提供了此插图的所有分析代码。(PsycInfo Database Record (c) 2025 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信