2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)最新文献

筛选
英文 中文
1-1 Forefront of Silicon Quantum Computing 1-1硅量子计算前沿
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241600
K. Itoh
{"title":"1-1 Forefront of Silicon Quantum Computing","authors":"K. Itoh","doi":"10.23919/SISPAD49475.2020.9241600","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241600","url":null,"abstract":"Forefront of the silicon quantum computer development is described.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122653053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Atomic Interface on Tunnel Barrier in Ferroelectric HfO2 Tunnel Junctions 铁电HfO2隧道结中原子界面对隧道势垒的影响
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241623
Junbeom Seo, M. Shin
{"title":"Effect of Atomic Interface on Tunnel Barrier in Ferroelectric HfO2 Tunnel Junctions","authors":"Junbeom Seo, M. Shin","doi":"10.23919/SISPAD49475.2020.9241623","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241623","url":null,"abstract":"We have demonstrated the dependence of the atomic terminations on ferroelectric tunnel junctions (FTJs) based on ferroelectric HfO2 using density functional theory calculation. The atomistic structures of HfO2 FTJs with various interfaces are constructed and their device performances are calculated. We have found that the potential barrier is significantly tailored by atomic species of the terminating atom of HfO2. In particular, the atomistic effect contributes to the electric field across the tunnel barrier, which leads to asymmetric behavior. We demonstrate that the ON/OFF current ratio of FTJs can be improved by adjusting the atomic terminations, albeit without the external asymmetric structure such as dissimilar metal electrodes and additional composite layers.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116007609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Physical Mechanism of Negative Capacitance Effect in Ferroelectric FET 铁电场效应管负电容效应的物理机理研究
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241628
M. Kobayashi
{"title":"On the Physical Mechanism of Negative Capacitance Effect in Ferroelectric FET","authors":"M. Kobayashi","doi":"10.23919/SISPAD49475.2020.9241628","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241628","url":null,"abstract":"Negative capacitance FET is a promising CMOS technology booster which may break the limit of 60mV/dec in subthreshold swing (SS) without degrading performance. We investigated the physical mechanism of negative capacitance in ferroelectric FET (FeFET) by considering the dynamics of the polarization in ferroelectric gate insulator: transient negative capacitance (TNC). Polarization switching and depolarization effect are essential to cause negative capacitance effect, that is, apparent surface potential amplification in deep subthreshold region with small depletion layer capacitance. Moreover, unique features of reverse DIBL and negative differential resistance (NDR) are also reproduced by the transient negative capacitance theory. Modeling charged defect in FeFET, hysteresis-free sub-60mV/dec SS can be realized. TNC theory is regarded as a comprehensive framework to model subthreshold characteristics of FeFET.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126305864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of gated GaAs-AlGaAs resonant tunneling diodes for tunable terahertz communication applications 用于可调谐太赫兹通信的门控GaAs-AlGaAs谐振隧道二极管的仿真
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241677
V. Georgiev, A. Sengupta, P. Maciazek, O. Badami, C. Medina-Bailón, T. Dutta, F. Adamu-Lema, A. Asenov
{"title":"Simulation of gated GaAs-AlGaAs resonant tunneling diodes for tunable terahertz communication applications","authors":"V. Georgiev, A. Sengupta, P. Maciazek, O. Badami, C. Medina-Bailón, T. Dutta, F. Adamu-Lema, A. Asenov","doi":"10.23919/SISPAD49475.2020.9241677","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241677","url":null,"abstract":"In this work, we report simulations on a GaAs-AlGaAs gated nanowire resonant tunneling diode (RTD) for tunable terahertz communication applications. All calculations are performed with the self-consistent Non-Equilibrium Green’s Function (NEGF) quantum transport formalism implemented in our in-house Nano-Electronic Simulation Software (NESS). Our simulations successfully capture the detailed picture of the quantum mechanical effects such as quantum confinement and resonant tunneling of electrons through barriers in such structures. Moreover, we report for the first time the correlation between the gate-bias voltage and the position of the resonant peak (VR) in the current - voltage characteristics. Such Vr, which is associated with tunneling effects in RTD, could lead to tunable terahertz generation and detection for communication applications.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128318747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Characteristics of Gate-All-Around Silicon Nanowire and Nanosheet MOSFETs with Various Spacers 不同间隔栅栅硅纳米线和纳米片mosfet的特性
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241603
S. Kola, Yiming Li, Narasimhulu Thoti
{"title":"Characteristics of Gate-All-Around Silicon Nanowire and Nanosheet MOSFETs with Various Spacers","authors":"S. Kola, Yiming Li, Narasimhulu Thoti","doi":"10.23919/SISPAD49475.2020.9241603","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241603","url":null,"abstract":"We estimate DC characteristics and single-charge trap (SCT) induced random telegraph noise (RTN) of gate-all-around (GAA) silicon nanowire (NW) and nanosheet (NS) metal-oxide-semiconductor field effect transistor (MOSFETs) for sub-5-nm nodes. Devices with various dielectric spacers from low- to high-κ including asymmetric dual spacers (ADS) are considered. More than 31% boost on the normalized on-state currents is observed for the explored devices with high-κ and ADS spacers. Similarly, for the normalized off-state currents, more than 50% reduction is achieved. The largest magnitude of the RTN (ΔID/ID×100%) is 6.7% for the nominal GAA Si NS MOSFET with an effective channel width of 40-nm.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128634347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Predictive Compact Modeling of Abnormal LDMOS Characteristics Due to Overlap-Length Modification 由于重叠长度修改导致的LDMOS异常特性的预测紧凑建模
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241665
T. Iizuka, D. Navarro, M. Miura-Mattausch, Hidenori Kikuchihara, H. Mattausch, Daniela Rus
{"title":"Predictive Compact Modeling of Abnormal LDMOS Characteristics Due to Overlap-Length Modification","authors":"T. Iizuka, D. Navarro, M. Miura-Mattausch, Hidenori Kikuchihara, H. Mattausch, Daniela Rus","doi":"10.23919/SISPAD49475.2020.9241665","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241665","url":null,"abstract":"Further compact-model development for LDMOS is reported, enabling concurrent device and circuit optimizations by only varying the ratio between gate-overlap length $(L_{mathrm{o}mathrm{v}mathrm{e}mathrm{r}})$ and resistive-drift length $(L_{mathrm{drift}})$. Different from the conventional carrier-dynamics understanding within these two regions, LDMOS shows abnormal characteristics during such a ratio variation. The pinch-off condition occurs under the gate overlap region, and the pinch-off point is found to move along $L_{mathrm{o}mathrm{v}mathrm{e}mathrm{r}}$ with increased drain voltage, even under the accumulation condition. This means that carrier conductivity is no longer controlled by the gate voltage but by the drain voltage. The precise pinch-off condition is determined by the field balancing within gate-overlap and resistive-drift regions. The pinch-off length $(Delta L)$ within $L_{mathrm{o}mathrm{v}mathrm{e}mathrm{r}}$ sustains $V_{mathrm{ds}}$ together with $L_{mathrm{drift}}$. Thus, the pinch-off region contributes as a part of $L_{mathrm{drift}}$ and improves the device’s high-voltage applicability. A new model is developed to describe this balancing phenomenon analytically, where the key physical quantity is $Delta L$. The developed $Delta L$ model considers the potential distribution along $L_{mathrm{o}mathrm{v}mathrm{e}mathrm{r}}$ together with $L_{mathrm{drift}}$. At the pinch-off point, the field induced by $V_{mathrm{g}s}$ and that by $V_{mathrm{ds}}$ are assumed to be equal, which derives an analytical description for $Delta L$. Evaluation results with the developed model are verified with 2D-numerical-device-simulation results.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128646761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computics Approach toward Clarification of Atomic Reactions during Epitaxial Growth of GaN 氮化镓外延生长过程中原子反应澄清的计算方法
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241682
A. Oshiyama, K. Bui, M. Boero, Y. Kangawa, K. Shiraishi
{"title":"Computics Approach toward Clarification of Atomic Reactions during Epitaxial Growth of GaN","authors":"A. Oshiyama, K. Bui, M. Boero, Y. Kangawa, K. Shiraishi","doi":"10.23919/SISPAD49475.2020.9241682","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241682","url":null,"abstract":"We report first-principles calculations based on the density-functional theory that clarify atomic reactions of ammonia decomposition and subsequent nitrogen incorporation during GaN epitaxial growth. We find that Ga-Ga weak bonds are ubiquitous on Ga-rich growing surface and responsible for the growth reactions. Furthermore, Car-Parrinello Molecular Dynamics simulations predict the existence of 2-dimensional Ga liquid phase, providing new insight into the epitaxial growth. The obtained results are expected to become basics for multi-scale growth simulations in future.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130103328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surge Current Capability in lateral AlGaN/GaN Hybrid Anode Diodes with p-GaN/Schottky Anode 带p-GaN/Schottky阳极的横向AlGaN/GaN混合阳极二极管的浪涌电流性能
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241673
G. Atmaca, M. Jaud, Julien Buckley Jérôme, A. Yvon, E. Collard
{"title":"Surge Current Capability in lateral AlGaN/GaN Hybrid Anode Diodes with p-GaN/Schottky Anode","authors":"G. Atmaca, M. Jaud, Julien Buckley Jérôme, A. Yvon, E. Collard","doi":"10.23919/SISPAD49475.2020.9241673","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241673","url":null,"abstract":"In lateral power diodes, the conductivity modulation mechanism can pave the way to the demonstration of surge current capability. In a Hybrid Anode Diode concept with a p-GaN layer, an anode contact on p-GaN layer can be a source of hole injection that increases the electron density at AlGaN/GaN interface. The role of p-GaN layer on the surge current capability and its demonstration are investigated through TCAD simulations that explain the role of hole barrier tunneling at anode metal/p-GaN interface. These simulations show that surge current can occur in case of Ohmic p-GaN contact as the injected holes can lead to create additional electron density in the channel as well as a hole current to support the total diode current.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128820405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimation of Phonon Mean Free Path in Small-Scaled Si Wire by Monte Carlo Simulation 用蒙特卡罗模拟估计小尺度硅线中声子平均自由程
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241616
Yuhei Suzuki, Y. Fujita, K. Fauziah, T. Nogita, H. Ikeda, Takanobu Watanabe, Y. Kamakura
{"title":"Estimation of Phonon Mean Free Path in Small-Scaled Si Wire by Monte Carlo Simulation","authors":"Yuhei Suzuki, Y. Fujita, K. Fauziah, T. Nogita, H. Ikeda, Takanobu Watanabe, Y. Kamakura","doi":"10.23919/SISPAD49475.2020.9241616","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241616","url":null,"abstract":"A phonon transport in Si wire structures were simulated based on a Monte Carlo method to clarify the influence of the wire geometry and the surface roughness on thermal conductivity and the phonon-drag component of Seebeck coefficient. The mean free path (MFP) spectrum was estimated by tracing the simulated phonons. The MFPs of 1 THz phonons which mainly contribute to Seebeck coefficient become shorter with a decrease of the wire width for rough surfaces. This agrees with experimental observation of Seebeck coefficient. The MFPs of 3 THz phonons which mainly contribute to thermal conductivity were influenced even by small-roughness surfaces.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130936694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance Metal-Ferroeletric-Semiconductor Nanosheet Line Tunneling Field Effect Transistors with Strained SiGe 应变SiGe的高性能金属-铁电-半导体纳米片线隧穿场效应晶体管
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Pub Date : 2020-09-23 DOI: 10.23919/SISPAD49475.2020.9241591
Narasimhulu Thoti, Yiming Li, S. Kola, S. Samukawa
{"title":"High-Performance Metal-Ferroeletric-Semiconductor Nanosheet Line Tunneling Field Effect Transistors with Strained SiGe","authors":"Narasimhulu Thoti, Yiming Li, S. Kola, S. Samukawa","doi":"10.23919/SISPAD49475.2020.9241591","DOIUrl":"https://doi.org/10.23919/SISPAD49475.2020.9241591","url":null,"abstract":"Nanosheet line tunnel-field effect transistors (NLTFETs) are for the first time proposed by utilizing the advantages of ferroelectricity through HZO materials. Three ferroelectric line TFETs have been proposed and investigated. Among these, the metal-ferroelectric-semiconductor (MFS) structure has shown superior performance than the other two variants. The factors of electric field and electron barrier tunneling have been addressed to govern the performance of these structures. In addition, the effects of the ferroelectric (Hf0.5 Zr0.5 O2) thickness (tFE) and the dielectric constant have been discussed. The MFS NLTFETs can effectively utilize the advantages of ferroelectric than the other variants. High on-current of 175.6 $mu mathrm{A}/mu mathrm{m}$ and low off-current of 38.4 aA/$mu mathrm{m}$ are achieved at tFE of 4 nm through proper utilization of gate-overlap on to the drain side. Furthermore, the proposed MFS structure successfully delivers low average and minimum subthreshold swings even at very thin tFE.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132283417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信