Yuhei Suzuki, Y. Fujita, K. Fauziah, T. Nogita, H. Ikeda, Takanobu Watanabe, Y. Kamakura
{"title":"Estimation of Phonon Mean Free Path in Small-Scaled Si Wire by Monte Carlo Simulation","authors":"Yuhei Suzuki, Y. Fujita, K. Fauziah, T. Nogita, H. Ikeda, Takanobu Watanabe, Y. Kamakura","doi":"10.23919/SISPAD49475.2020.9241616","DOIUrl":null,"url":null,"abstract":"A phonon transport in Si wire structures were simulated based on a Monte Carlo method to clarify the influence of the wire geometry and the surface roughness on thermal conductivity and the phonon-drag component of Seebeck coefficient. The mean free path (MFP) spectrum was estimated by tracing the simulated phonons. The MFPs of 1 THz phonons which mainly contribute to Seebeck coefficient become shorter with a decrease of the wire width for rough surfaces. This agrees with experimental observation of Seebeck coefficient. The MFPs of 3 THz phonons which mainly contribute to thermal conductivity were influenced even by small-roughness surfaces.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A phonon transport in Si wire structures were simulated based on a Monte Carlo method to clarify the influence of the wire geometry and the surface roughness on thermal conductivity and the phonon-drag component of Seebeck coefficient. The mean free path (MFP) spectrum was estimated by tracing the simulated phonons. The MFPs of 1 THz phonons which mainly contribute to Seebeck coefficient become shorter with a decrease of the wire width for rough surfaces. This agrees with experimental observation of Seebeck coefficient. The MFPs of 3 THz phonons which mainly contribute to thermal conductivity were influenced even by small-roughness surfaces.