Predictive Compact Modeling of Abnormal LDMOS Characteristics Due to Overlap-Length Modification

T. Iizuka, D. Navarro, M. Miura-Mattausch, Hidenori Kikuchihara, H. Mattausch, Daniela Rus
{"title":"Predictive Compact Modeling of Abnormal LDMOS Characteristics Due to Overlap-Length Modification","authors":"T. Iizuka, D. Navarro, M. Miura-Mattausch, Hidenori Kikuchihara, H. Mattausch, Daniela Rus","doi":"10.23919/SISPAD49475.2020.9241665","DOIUrl":null,"url":null,"abstract":"Further compact-model development for LDMOS is reported, enabling concurrent device and circuit optimizations by only varying the ratio between gate-overlap length $(L_{\\mathrm{o}\\mathrm{v}\\mathrm{e}\\mathrm{r}})$ and resistive-drift length $(L_{\\mathrm{drift}})$. Different from the conventional carrier-dynamics understanding within these two regions, LDMOS shows abnormal characteristics during such a ratio variation. The pinch-off condition occurs under the gate overlap region, and the pinch-off point is found to move along $L_{\\mathrm{o}\\mathrm{v}\\mathrm{e}\\mathrm{r}}$ with increased drain voltage, even under the accumulation condition. This means that carrier conductivity is no longer controlled by the gate voltage but by the drain voltage. The precise pinch-off condition is determined by the field balancing within gate-overlap and resistive-drift regions. The pinch-off length $(\\Delta L)$ within $L_{\\mathrm{o}\\mathrm{v}\\mathrm{e}\\mathrm{r}}$ sustains $V_{\\mathrm{ds}}$ together with $L_{\\mathrm{drift}}$. Thus, the pinch-off region contributes as a part of $L_{\\mathrm{drift}}$ and improves the device’s high-voltage applicability. A new model is developed to describe this balancing phenomenon analytically, where the key physical quantity is $\\Delta L$. The developed $\\Delta L$ model considers the potential distribution along $L_{\\mathrm{o}\\mathrm{v}\\mathrm{e}\\mathrm{r}}$ together with $L_{\\mathrm{drift}}$. At the pinch-off point, the field induced by $V_{\\mathrm{g}s}$ and that by $V_{\\mathrm{ds}}$ are assumed to be equal, which derives an analytical description for $\\Delta L$. Evaluation results with the developed model are verified with 2D-numerical-device-simulation results.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Further compact-model development for LDMOS is reported, enabling concurrent device and circuit optimizations by only varying the ratio between gate-overlap length $(L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}})$ and resistive-drift length $(L_{\mathrm{drift}})$. Different from the conventional carrier-dynamics understanding within these two regions, LDMOS shows abnormal characteristics during such a ratio variation. The pinch-off condition occurs under the gate overlap region, and the pinch-off point is found to move along $L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$ with increased drain voltage, even under the accumulation condition. This means that carrier conductivity is no longer controlled by the gate voltage but by the drain voltage. The precise pinch-off condition is determined by the field balancing within gate-overlap and resistive-drift regions. The pinch-off length $(\Delta L)$ within $L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$ sustains $V_{\mathrm{ds}}$ together with $L_{\mathrm{drift}}$. Thus, the pinch-off region contributes as a part of $L_{\mathrm{drift}}$ and improves the device’s high-voltage applicability. A new model is developed to describe this balancing phenomenon analytically, where the key physical quantity is $\Delta L$. The developed $\Delta L$ model considers the potential distribution along $L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$ together with $L_{\mathrm{drift}}$. At the pinch-off point, the field induced by $V_{\mathrm{g}s}$ and that by $V_{\mathrm{ds}}$ are assumed to be equal, which derives an analytical description for $\Delta L$. Evaluation results with the developed model are verified with 2D-numerical-device-simulation results.
由于重叠长度修改导致的LDMOS异常特性的预测紧凑建模
本文还报道了LDMOS的进一步紧凑模型开发,仅通过改变栅极重叠长度$(L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}})$和电阻漂移长度$(L_{\mathrm{drift}})$之间的比值,即可实现器件和电路的并行优化。与传统的载流子动力学在这两个区域的理解不同,LDMOS在这种比率变化中表现出异常特征。当漏极电压增加时,即使在累加条件下,截断点也会沿着$L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$移动。这意味着载流子电导率不再由栅极电压控制,而是由漏极电压控制。精确的掐断条件由栅极重叠和电阻漂移区域内的场平衡决定。在$L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$内的截断长度$(\Delta L)$维持$V_{\mathrm{ds}}$与$L_{\mathrm{drift}}$。因此,截断区作为$L_{\ mathm {drift}}$的一部分做出了贡献,并提高了器件的高压适用性。建立了一个新的模型来解析地描述这种平衡现象,其中关键物理量是$\Delta L$。开发的$\Delta L$模型考虑沿$L_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}$和$L_{\mathrm{drift}}$的潜在分布。在截断点,假设$V_{\ mathm {g}s}$和$V_{\ mathm {ds}}$诱导的场相等,从而导出$\Delta L$的解析描述。用二维数值装置仿真结果验证了所建立模型的评价结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信