Plant and Cell Physiology最新文献

筛选
英文 中文
Bilirubin Distribution in Plants at the Subcellular and Tissue Levels. 胆红素在植物亚细胞和组织中的分布。
IF 4.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-30 DOI: 10.1093/pcp/pcae017
Kazuya Ishikawa, Yutaka Kodama
{"title":"Bilirubin Distribution in Plants at the Subcellular and Tissue Levels.","authors":"Kazuya Ishikawa, Yutaka Kodama","doi":"10.1093/pcp/pcae017","DOIUrl":"10.1093/pcp/pcae017","url":null,"abstract":"<p><p>In heterotrophs, heme degradation produces bilirubin, a tetrapyrrole compound that has antioxidant activity. In plants, heme is degraded in plastids and is believed to be converted to phytochromobilin rather than bilirubin. Recently, we used the bilirubin-inducible fluorescent protein UnaG to reveal that plants produce bilirubin via a non-enzymatic reaction with NADPH. In the present study, we used an UnaG-based live imaging system to visualize bilirubin accumulation in Arabidopsis thaliana and Nicotiana benthamiana at the organelle and tissue levels. In chloroplasts, bilirubin preferentially accumulated in the stroma, and the stromal bilirubin level increased upon dark treatment. Investigation of intracellular bilirubin distribution in leaves and roots showed that it accumulated mostly in plastids, with low levels detected in the cytosol and other organelles, such as peroxisomes, mitochondria and the endoplasmic reticulum. A treatment that increased bilirubin production in chloroplasts decreased the bilirubin level in peroxisomes, implying that a bilirubin precursor is transported between the two organelles. At the cell and tissue levels, bilirubin showed substantial accumulation in the root elongation region but little or none in the root cap and guard cells. Intermediate bilirubin accumulation was observed in other shoot and root tissues, with lower levels in shoot tissues. Our data revealed the distribution of bilirubin in plants, which has implications for the transport and physiological function of tetrapyrroles.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SULTR2;1 Adjusts the Bolting Timing by Transporting Sulfate from Rosette Leaves to the Primary Stem. SULTR2;1 通过将硫酸盐从莲座叶输送到主茎来调整勃起时间。
IF 4.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-30 DOI: 10.1093/pcp/pcae020
Khamsalath Soudthedlath, Toshiki Nakamura, Tsukasa Ushiwatari, Jutarou Fukazawa, Keishi Osakabe, Yuriko Osakabe, Akiko Maruyama-Nakashita
{"title":"SULTR2;1 Adjusts the Bolting Timing by Transporting Sulfate from Rosette Leaves to the Primary Stem.","authors":"Khamsalath Soudthedlath, Toshiki Nakamura, Tsukasa Ushiwatari, Jutarou Fukazawa, Keishi Osakabe, Yuriko Osakabe, Akiko Maruyama-Nakashita","doi":"10.1093/pcp/pcae020","DOIUrl":"10.1093/pcp/pcae020","url":null,"abstract":"<p><p>Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139997268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SOG1 and BRCA1 Interdependently Regulate RAD54 Expression for Repairing Salinity-Induced DNA Double-Strand Breaks in Arabidopsis. SOG1 和 BRCA1 相互依赖地调控 RAD54 的表达,以修复拟南芥中盐分诱导的 DNA 双链断裂。
IF 4.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-30 DOI: 10.1093/pcp/pcae008
Kalyan Mahapatra, Sujit Roy
{"title":"SOG1 and BRCA1 Interdependently Regulate RAD54 Expression for Repairing Salinity-Induced DNA Double-Strand Breaks in Arabidopsis.","authors":"Kalyan Mahapatra, Sujit Roy","doi":"10.1093/pcp/pcae008","DOIUrl":"10.1093/pcp/pcae008","url":null,"abstract":"<p><p>As sessile organisms, land plants experience various forms of environmental stresses throughout their life span. Therefore, plants have developed extensive and complicated defense mechanisms, including a robust DNA damage response (DDR) and DNA repair systems for maintaining genome integrity. In Arabidopsis, the NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) plays an important role in regulating DDR. Here, we show that SOG1 plays a key role in regulating the repair of salinity-induced DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway in Arabidopsis. The sog1-1 mutant seedlings display a considerably slower rate of repair of salinity-induced DSBs. Accumulation of SOG1 protein increases in wild-type Arabidopsis under salinity stress, and it enhances the expression of HR pathway-related genes, including RAD51, RAD54 and BReast CAncer gene 1 (BRCA1), respectively, as found in SOG1 overexpression lines. SOG1 binds specifically to the AtRAD54 promoter at the 5'-(N)4GTCAA(N)3C-3' consensus sequence and positively regulates its expression under salinity stress. The phenotypic responses of sog1-1/atrad54 double mutants suggest that SOG1 functions upstream of RAD54, and both these genes are essential in regulating DDR under salinity stress. Furthermore, SOG1 interacts directly with BRCA1, an important component of the HR-mediated DSB repair pathway in plants, where BRCA1 appears to facilitate the binding of SOG1 to the RAD54 promoter. At the genetic level, SOG1 and BRCA1 function interdependently in modulating RAD54 expression under salinity-induced DNA damage. Together, our results suggest that SOG1 regulates the repair of salinity-induced DSBs via the HR-mediated pathway through genetic interactions with RAD54 and BRCA1 in Arabidopsis.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139502768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Letter to the Editor: Blue Light Irradiation Induces Pollen Tube Rupture in Various Flowering Plants. 致编辑的信:蓝光照射可诱导多种开花植物的花粉管破裂。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-30 DOI: 10.1093/pcp/pcae018
Naoya Sugi, Daichi Susaki, Yoko Mizuta, Tetsu Kinoshita, Daisuke Maruyama
{"title":"Letter to the Editor: Blue Light Irradiation Induces Pollen Tube Rupture in Various Flowering Plants.","authors":"Naoya Sugi, Daichi Susaki, Yoko Mizuta, Tetsu Kinoshita, Daisuke Maruyama","doi":"10.1093/pcp/pcae018","DOIUrl":"10.1093/pcp/pcae018","url":null,"abstract":"","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of Peptidoglycan Receptor Proteins in Mediating the Growth-Promoting Effects of Bacillus pumilus TUAT1 in Arabidopsis thaliana. 肽聚糖受体蛋白在拟南芥中参与介导枯草芽孢杆菌 TUAT1 的促生长效应
IF 4.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-30 DOI: 10.1093/pcp/pcae016
Md Monirul Islam, Shin-Ichiro Agake, Takehiro Ito, Safiullah Habibi, Michiko Yasuda, Tetsuya Yamada, Gary Stacey, Naoko Ohkama-Ohtsu
{"title":"Involvement of Peptidoglycan Receptor Proteins in Mediating the Growth-Promoting Effects of Bacillus pumilus TUAT1 in Arabidopsis thaliana.","authors":"Md Monirul Islam, Shin-Ichiro Agake, Takehiro Ito, Safiullah Habibi, Michiko Yasuda, Tetsuya Yamada, Gary Stacey, Naoko Ohkama-Ohtsu","doi":"10.1093/pcp/pcae016","DOIUrl":"10.1093/pcp/pcae016","url":null,"abstract":"<p><p>Bacillus pumilus TUAT1 acts as plant growth-promoting rhizobacteria for various plants like rice and Arabidopsis. Under stress conditions, B. pumilus TUAT1 forms spores with a thick peptidoglycan (PGN) cell wall. Previous research showed that spores were significantly more effective than vegetative cells in enhancing plant growth. In Arabidopsis, lysin motif proteins, LYM1, LYM3 and CERK1, are required for recognizing bacterial PGNs to mediate immunity. Here, we examined the involvement of PGN receptor proteins in the plant growth promotion (PGP) effects of B. pumilus TUAT1 using Arabidopsis mutants defective in PGN receptors. Root growth of wild-type (WT), cerk1-1, lym1-1 and lym1-2 mutant plants was significantly increased by TUAT1 inoculation, but this was not the case for lym3-1 and lym3-2 mutant plants. RNA-seq analysis revealed that the expression of a number of defense-related genes was upregulated in lym3 mutant plants. These results suggested that B. pumilus TUAT1 may act to reduce the defense response, which is dependent on a functional LYM3. The expression of the defense-responsive gene, WRKY29, was significantly induced by the elicitor flg-22, in both WT and lym3 mutant plants, while this induction was significantly reduced by treatment with B. pumilus TUAT1 and PGNs in WT, but not in lym3 mutant plants. These findings suggest that the PGNs of B. pumilus TUAT1 may be recognized by the LYM3 receptor protein, suppressing the defense response, which results in plant growth promotion in a trade-off between defense and growth.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pleiotropic Effects of miR5504 Underlying Plant Height, Grain Yield and Quality in Rice. miR5504对水稻株高、谷物产量和品质的多向影响
IF 4.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-30 DOI: 10.1093/pcp/pcae015
Huihui Wang, Xin Wang, Yangyang Li, Ying Cui, Xin Yan, Jiadong Gao, Jiexiu Ouyang, Shaobo Li
{"title":"Pleiotropic Effects of miR5504 Underlying Plant Height, Grain Yield and Quality in Rice.","authors":"Huihui Wang, Xin Wang, Yangyang Li, Ying Cui, Xin Yan, Jiadong Gao, Jiexiu Ouyang, Shaobo Li","doi":"10.1093/pcp/pcae015","DOIUrl":"10.1093/pcp/pcae015","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are known to play critical roles in regulating rice agronomic traits through mRNA cleavage or translational repression. Our previous study indicated that miR5504 regulates plant height by affecting cell proliferation and expansion. Here, the two independent homozygous mir5504 mutants (CR1 and CR2) and overexpression lines (OE1 and OE2) were further used to investigate the functions of miR5504. The panicle length, 1000-grain weight and grain yield per plant of miR5504-OE lines were identical to those of Nipponbare (NIP), but the 1000-grain weight of mir5504 mutants was reduced by about 10% and 9%, respectively. Meanwhile, the grain width and thickness of mir5504 mutants decreased significantly by approximately 10% and 11%, respectively. Moreover, the cytological results revealed a significant decrease in cell number along grain width direction and cell width in spikelet in mir5504, compared with those in NIP. In addition, several major storage substances of the rice seeds were measured. Compared to NIP, the amylose content of the mir5504 seeds was noticeably decreased, leading to an increase of nearly 10 mm in gel consistency (GC) in mir5504 lines. Further investigation confirmed that LOC_Os08g16914 was the genuine target of miR5504: LOC_Os08g16914 over-expression plants phenocopied the mir5504 mutants. This study provides insights into the role of miR5504 in rice seed development.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic insights into the function of 14-3-3 proteins as negative regulators of brassinosteroid signaling in Arabidopsis. 拟南芥中 14-3-3 蛋白作为黄铜类固醇信号转导负调控因子的功能机理研究。
IF 4.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-23 DOI: 10.1093/pcp/pcae056
Elsa Obergfell, Ulrich Hohmann, Andrea Moretti, Houming Chen, Michael Hothorn
{"title":"Mechanistic insights into the function of 14-3-3 proteins as negative regulators of brassinosteroid signaling in Arabidopsis.","authors":"Elsa Obergfell, Ulrich Hohmann, Andrea Moretti, Houming Chen, Michael Hothorn","doi":"10.1093/pcp/pcae056","DOIUrl":"https://doi.org/10.1093/pcp/pcae056","url":null,"abstract":"<p><p>Brassinosteroids (BRs) are vital plant steroid hormones sensed at the cell surface by a membrane signaling complex comprising the receptor kinase BRI1 and a SERK-family co-receptor kinase. Activation of this complex lead to dissociation of the inhibitor protein BKI1 from the receptor and to differential phosphorylation of BZR1/BES1 transcription factors by the glycogen synthase kinase 3 protein BIN2. Many phosphoproteins of the BR signaling pathway, including BRI1, SERKs, BKI1 and BZR1/BES1 can associate with 14-3-3 proteins. In this study, we use quantitative ligand binding assays to define the minimal 14-3-3 binding sites in the N-terminal lobe of the BRI1 kinase domain, in BKI1, and in BZR1 from Arabidopsis thaliana. All three motifs require to be phosphorylated to specifically bind 14-3-3s with mid- to low micromolar affinity. BR signaling components display minimal isoform preference within the 14-3-3 non-ε subgroup. 14-3-3λ and 14-3-3ω isoform complex crystal structures reveal that BKI1 and BZR1 bind as canonical type II 14-3-3 linear motifs. Disruption of key amino acids in the phosphopeptide binding site through mutation impairs the interaction of 14-3-3λ with all three linear motifs. Notably, quadruple loss-of-function mutants from the non-ε group exhibit gain-of-function brassinosteroid signaling phenotypes, suggesting a role for 14-3-3 proteins as overall negative regulators of the BR pathway. Collectively, our work provides further mechanistic and genetic evidence for the regulatory role of 14-3-3 proteins at various stages of the brassinosteroid signaling cascade.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141088568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Mimicry of Transposable Elements in Plants. 植物中可转座元件的分子模拟。
IF 4.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-18 DOI: 10.1093/pcp/pcae058
Jie Chu, Josephine Newman, Jungnam Cho
{"title":"Molecular Mimicry of Transposable Elements in Plants.","authors":"Jie Chu, Josephine Newman, Jungnam Cho","doi":"10.1093/pcp/pcae058","DOIUrl":"https://doi.org/10.1093/pcp/pcae058","url":null,"abstract":"<p><p>Transposable elements (TEs) are mobile DNA elements that are particularly abundant in the plant genomes. They have long been considered as junk DNA; however, a growing body of evidence suggests that TE insertions promote genetic diversity that is essential for the adaptive evolution of a species. Thus far, studies have mainly investigated the cis-acting regulatory roles of TEs generated by their insertions nearby or within the host genes. However, the trans-acting effects of TE-derived RNA and DNA remained obscure to date. TEs contain various regulatory elements within their sequences that can accommodate the binding of specific RNAs and proteins. Recently, it was suggested that some of these cellular regulators are shared between TEs and the host genes, and the competition for the common host factors underlies the fine-tuned developmental reprogramming. In this review, we will highlight and discuss the latest discoveries on the biological functions of plant TEs, with a particular focus on their competitive binding with specific developmental regulators.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Title: Bona Fide Plant Steroid Receptors Are Innovated in Seed Plants and Angiosperms through Successive Whole Genome Duplication Events. 标题:真正的植物类固醇受体通过连续的全基因组复制事件在种子植物和被子植物中得到创新
IF 4.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-17 DOI: 10.1093/pcp/pcae054
Jing Liu, Qiang Wei, Zhen Zhao, Fanqi Qiang, Guishuang Li, Guang Wu
{"title":"Title: Bona Fide Plant Steroid Receptors Are Innovated in Seed Plants and Angiosperms through Successive Whole Genome Duplication Events.","authors":"Jing Liu, Qiang Wei, Zhen Zhao, Fanqi Qiang, Guishuang Li, Guang Wu","doi":"10.1093/pcp/pcae054","DOIUrl":"https://doi.org/10.1093/pcp/pcae054","url":null,"abstract":"<p><p>Whole genome duplication (WGD) events are widespread in plants and animals, thus their long-term evolutionary contribution has long been speculated, yet a specific contribution is difficult to verify. Here, we show that ɛ-WGD and ζ-WGD contribute to the origin and evolution of bona fide brassinosteroid (BR) signaling through the innovation of active BR biosynthetic enzymes and active BR receptors from their respective ancestors. We found that BR receptors BRI1 (BR Insensitive 1) and BRL1/3 (BRI1-likes 1/3) derived by ɛ-WGD and ζ-WGD, which occurred in the common ancestor of angiosperms and seed plants, respectively, while orphan BR receptor BRL2 first appeared in stomatophytes. Additionally, CYP85A enzymes synthesizing the bioactive BRs derived from a common ancestor of seed plants while its sister enzymes CYP90 synthesizing BR precursors presented in all land plants, implying possible ligand-receptor coevolution. Consistently, the island domains (IDs) responsible for BR perception in BR receptors were most divergent among different receptor branches, supporting ligand-driven evolution. As a result, BRI1 was the most diversified BR receptor in angiosperms. Importantly, relative to the BR biosynthetic DET2 gene presented in all land plants, BRL2, BRL1/3 and BRI1 had high expression in vascular plants ferns, gymnosperms and angiosperms, respectively. Notably, BRI1 is the most diversified BR receptor with the most abundant expression in angiosperms, suggesting potential positive selection. Therefore, WGDs initiate a neofunctionalization process diverged by ligand-perception and transcriptional expression, which might optimize both BR biosynthetic enzymes and BR receptors, likely contributing to the evolution of land plants, especially seed plants and angiosperms.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stromule Geometry Allows Optimal Spatial Regulation of Organelle Interactions in the Quasi-2D Cytoplasm. 基质几何学允许对准二维细胞质中的细胞器相互作用进行最佳空间调控
IF 4.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-05-14 DOI: 10.1093/pcp/pcad098
Jessica Lee Erickson, Jennifer Prautsch, Frisine Reynvoet, Frederik Niemeyer, Gerd Hause, Iain G Johnston, Martin Harmut Schattat
{"title":"Stromule Geometry Allows Optimal Spatial Regulation of Organelle Interactions in the Quasi-2D Cytoplasm.","authors":"Jessica Lee Erickson, Jennifer Prautsch, Frisine Reynvoet, Frederik Niemeyer, Gerd Hause, Iain G Johnston, Martin Harmut Schattat","doi":"10.1093/pcp/pcad098","DOIUrl":"10.1093/pcp/pcad098","url":null,"abstract":"<p><p>In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D. We combine these imaging modalities with mathematical modeling and new in planta experiments to demonstrate how different stromule varieties (single or multiple, linear or branching) could be employed to optimize different aspects of inter-organelle interaction capacity in this 2D space. We found that stromule formation and branching provide a proportionally higher benefit to interaction capacity in 2D than in 3D. Additionally, this benefit depends on optimal plastid spacing. We hypothesize that cells can promote the formation of different stromule architectures in the quasi-2D cytoplasm to optimize their interaction interface to meet specific requirements. These results provide new insight into the mechanisms underlying the transition from low to high stromule numbers, the consequences for interaction with smaller organelles, how plastid access and plastid to nucleus signaling are balanced and the impact of plastid density on organelle interaction.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10137850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信