{"title":"Natural variation in potassium deficiency responses among Arabidopsis thaliana accessions.","authors":"Nana Sugimura, Yasuhito Sakuraba, Kosuke Usuda, Namie Ohtsuki, Keina Monda, Koh Iba, Shuichi Yanagisawa","doi":"10.1093/pcp/pcaf041","DOIUrl":null,"url":null,"abstract":"<p><p>Potassium (K) is a key nutrient essential for plant growth, and its deficiency induces various adaptative responses in plants; however, the mechanisms underlying these responses remain unclear. In the present study, we explored the natural variation in K deficiency responses among 100 naturally occurring accessions of Arabidopsis thaliana and then performed a genome-wide association study (GWAS) to identify the genetic loci associated with these responses. All 100 Arabidopsis accessions showed significant differences in several traits under K deficiency, including shoot and root growth, photosynthetic activity, and inorganic ion contents. The results indicated that the reduction in K+ content due to K deficiency was correlated more significantly with decreases in the number and total length of lateral roots than with decreases in primary root length and shoot growth. Furthermore, GWAS and subsequent analyses of relevant mutants and transgenic plants suggested that several genes, which have not yet been shown to play a role in the K deficiency response, are associated with the number and/or total length of lateral roots under K deficiency. The identified genes are ROH1, NF-YA3, MAA3, and AtDTX28, which encode an exocyst subunit EXO70A1 interacting protein, an NF-Y type transcription factor, a female gametophyte development-related protein, and a MATE efflux family protein, respectively. These findings provide new insights into the mechanisms underlying K deficiency responses.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"956-970"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcaf041","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Potassium (K) is a key nutrient essential for plant growth, and its deficiency induces various adaptative responses in plants; however, the mechanisms underlying these responses remain unclear. In the present study, we explored the natural variation in K deficiency responses among 100 naturally occurring accessions of Arabidopsis thaliana and then performed a genome-wide association study (GWAS) to identify the genetic loci associated with these responses. All 100 Arabidopsis accessions showed significant differences in several traits under K deficiency, including shoot and root growth, photosynthetic activity, and inorganic ion contents. The results indicated that the reduction in K+ content due to K deficiency was correlated more significantly with decreases in the number and total length of lateral roots than with decreases in primary root length and shoot growth. Furthermore, GWAS and subsequent analyses of relevant mutants and transgenic plants suggested that several genes, which have not yet been shown to play a role in the K deficiency response, are associated with the number and/or total length of lateral roots under K deficiency. The identified genes are ROH1, NF-YA3, MAA3, and AtDTX28, which encode an exocyst subunit EXO70A1 interacting protein, an NF-Y type transcription factor, a female gametophyte development-related protein, and a MATE efflux family protein, respectively. These findings provide new insights into the mechanisms underlying K deficiency responses.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.