{"title":"Diurnal.plant.tools in 2024: Expanding to Marchantia polymorpha and Four Angiosperms.","authors":"Qiao Wen Tan, Emmanuel Tan, Marek Mutwil","doi":"10.1093/pcp/pcae099","DOIUrl":"10.1093/pcp/pcae099","url":null,"abstract":"<p><p>Diurnal gene expression is a pervasive phenomenon occurring across all kingdoms of life, orchestrating adaptive responses to daily environmental fluctuations and thus enhancing organismal fitness. Our understanding of the plant circadian clock is primarily derived from studies in Arabidopsis, and direct comparisons are difficult due to differences in gene family sizes. To this end, the identification of functional orthologs based on diurnal and tissue expression is necessary. The diurnal.plant.tools database constitutes a repository of gene expression profiles from 17 members of the Archaeplastida lineage, with built-in tools facilitating cross-species comparisons. In this database update, we expand the dataset with diurnal gene expression from four agriculturally significant crop species and Marchantia, a plant of evolutionary significance. Notably, the inclusion of diurnal gene expression data for Marchantia enables researchers to glean insights into the evolutionary trajectories of the circadian clock and other biological processes spanning from algae to angiosperms. Moreover, integrating diurnal gene expression data with datasets from related gene co-expression databases, such as CoNekt-Plants and CoNekt-Stress, which contain gene expression data for tissue and perturbation experiments, provides a comprehensive overview of gene functions across diverse biological contexts. This expanded database serves as a valuable resource for elucidating the intricacies of diurnal gene regulation and its evolutionary underpinnings in plant biology.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"1888-1899"},"PeriodicalIF":3.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rapid Vacuolar Sorting of the Borate Transporter BOR1 Requires the Adaptor Protein Complex AP-4 in Arabidopsis.","authors":"Akira Yoshinari, Yutaro Shimizu, Takuya Hosokawa, Akihiko Nakano, Tomohiro Uemura, Junpei Takano","doi":"10.1093/pcp/pcae096","DOIUrl":"10.1093/pcp/pcae096","url":null,"abstract":"<p><p>Plants maintain nutrient homeostasis by controlling the activities and abundance of nutrient transporters. In Arabidopsis thaliana, the borate (B) transporter BOR1 plays a role in the efficient translocation of B under low-B conditions. BOR1 undergoes polyubiquitination in the presence of sufficient B and is then transported to the vacuole via multivesicular bodies (MVBs) to prevent B accumulation in tissues at a toxic level. A previous study indicated that BOR1 physically interacts with µ subunits of adaptor protein complexes AP-3 and AP-4, both involved in vacuolar sorting pathways. In this study, we investigated the roles of AP-3 and AP-4 subunits in BOR1 trafficking in Arabidopsis. The lack of AP-3 subunits did not affect either vacuolar sorting or polar localization of BOR1-GFP, whereas the absence of AP-4 subunits resulted in a delay in high-B-induced vacuolar sorting without affecting polar localization. Super-resolution microscopy revealed a rapid sorting of BOR1-GFP into AP-4-positive spots in the trans-Golgi network (TGN) upon high-B supply. These results indicate that AP-4 is involved in sequestration of ubiquitinated BOR1 into a TGN-specific subdomain 'vacuolar-trafficking zone', and is required for efficient sorting of MVB and vacuole. Our findings have thus helped elucidate the rapid vacuolar sorting process facilitated by AP-4 in plant nutrient transporters.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"1801-1811"},"PeriodicalIF":3.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nutrient Requirements Shape the Preferential Habitat of Allorhizobium vitis VAR03-1, a Commensal Bacterium, in the Rhizosphere of Arabidopsis thaliana.","authors":"Niarsi Merry Hemelda, Jiyuan Bao, Megumi Watanabe, Hidenori Matsui, Kazuhiro Toyoda, Yuki Ichinose, Yoshiteru Noutoshi","doi":"10.1093/pcp/pcae091","DOIUrl":"10.1093/pcp/pcae091","url":null,"abstract":"<p><p>A diverse range of commensal bacteria inhabit the rhizosphere, influencing host plant growth and responses to biotic and abiotic stresses. While root-released nutrients can define soil microbial habitats, the bacterial factors involved in plant-microbe interactions are not well characterized. In this study, we investigated the colonization patterns of two plant disease biocontrol agents, Allorhizobium vitis VAR03-1 and Pseudomonas protegens Cab57, in the rhizosphere of Arabidopsis thaliana using Murashige and Skoog (MS) agar medium. VAR03-1 formed colonies even at a distance from the roots, preferentially in the upper part, while Cab57 colonized only the root surface. The addition of sucrose to the agar medium resulted in excessive proliferation of VAR03-1, similar to its pattern without sucrose, whereas Cab57 formed colonies only near the root surface. Overgrowth of both bacterial strains upon nutrient supplementation inhibited host growth, independent of plant immune responses. This inhibition was reduced in the VAR03-1 ΔrecA mutant, which exhibited increased biofilm formation, suggesting that some activities associated with the free-living lifestyle rather than the sessile lifestyle may be detrimental to host growth. VAR03-1 grew in liquid MS medium with sucrose alone, while Cab57 required both sucrose and organic acids. Supplementation of sugars and organic acids allowed both bacterial strains to grow near and away from Arabidopsis roots in MS agar. These results suggest that nutrient requirements for bacterial growth may determine their growth habitats in the rhizosphere, with nutrients released in root exudates potentially acting as a limiting factor in harnessing microbiota.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"1769-1786"},"PeriodicalIF":3.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Puerarin in Chronic Wounds: A Review of its Mechanism of Action and Potential Novel Applications.","authors":"Noor Anvery, Abdulhafez Selim, Amor Khachemoune","doi":"10.1177/15347346221086687","DOIUrl":"10.1177/15347346221086687","url":null,"abstract":"<p><p>Chronic wounds have a high disease burden and significantly influence patient quality of life. The development of chronic wounds is multifactorial and thus adequate management and care is often difficult to achieve. Chronic diseases, malnutrition, smoking, immune dysregulation, and age contribute to chronic wound development. Treatment options include adequately addressing underlying conditions and selecting appropriate topical preparations which enhance and promote healing of different wounds based on an understanding of wound healing pathophysiology. Puerarin, a naturally occurring flavinoid, may offer therapeutic potential for addressing etiologies as well as managing wound beds due to its anti-inflammatory, anti-oxidative, pro-angiogenic, and anesthetic properties.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":"33 1","pages":"492-496"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83144065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohsen Hajheideri, Shamil Sunyaev, Juliette de Meaux
{"title":"Are complex traits underpinned by polygenic molecular traits? A reflection on the complexity of gene expression.","authors":"Mohsen Hajheideri, Shamil Sunyaev, Juliette de Meaux","doi":"10.1093/pcp/pcae140","DOIUrl":"https://doi.org/10.1093/pcp/pcae140","url":null,"abstract":"","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142771716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ozone Priming Enhanced Low Temperature Tolerance of Wheat (Triticum Aestivum L.) based on Physiological, Biochemical and Transcriptional Analyses.","authors":"Bing Dai, Hongyan Wang, Weiqiang Li, Peng Zhang, Tianhao Liu, Xiangnan Li","doi":"10.1093/pcp/pcae087","DOIUrl":"10.1093/pcp/pcae087","url":null,"abstract":"<p><p>Low temperature significantly inhibits plant growth in wheat (Triticum aestivum L.), prompting the exploration of effective strategies to mitigate low temperature stress. Several priming methods enhance low temperature stress tolerance; however, the role of ozone priming remains unclear in wheat. Here we found ozone priming alleviated low temperature stress in wheat. Transcriptome analysis showed that ozone priming positively modulated the 'photosynthesis-antenna proteins' pathway in wheat under low temperature. This was confirmed by the results of ozone-primed plants, which had higher trapped energy flux and electron transport flux per reaction, and less damage to chloroplasts than non-primed plants under low temperature. Ozone priming also mitigated the overstimulation of glutathione metabolism and induced the accumulation of total ascorbic acid and glutathione, as well as maintaining redox homeostasis in wheat under low temperature. Moreover, gene expressions and enzyme activities in glycolysis pathways were upregulated in ozone priming compared with non-priming after the low temperature stress. Furthermore, exogenous antibiotics significantly increased low temperature tolerance, which further proved that the inhibition of ribosome biogenesis by ozone priming was involved in low temperature tolerance in wheat. In conclusion, ozone priming enhanced wheat's low temperature tolerance through promoting light-harvesting capacity, redox homeostasis and carbohydrate metabolism, as well as inhibiting ribosome biogenesis.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"1689-1704"},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Mao, Biaodi Shen, Wenxin Li, Linchuan Liu, Jianming Li
{"title":"Post-translational Regulation of BRI1-EMS Suppressor 1 and Brassinazole-Resistant 1.","authors":"Juan Mao, Biaodi Shen, Wenxin Li, Linchuan Liu, Jianming Li","doi":"10.1093/pcp/pcae066","DOIUrl":"10.1093/pcp/pcae066","url":null,"abstract":"<p><p>Brassinosteroid-insensitive 1 (BRI1)-EMS suppressor 1 (BES1) and Brassinazole-resistant 1 (BZR1) are two highly similar master transcription factors of the brassinosteroid (BR) signaling pathway that regulates a variety of plant growth and development processes as well as stress responses. Previous genetic and biochemical analyses have established a complex regulatory network to control the two transcription factors. This network includes coordination with other transcription factors and interactors, multiple post-translational modifications (PTMs) and differential subcellular localizations. In this review, we systematically detail the functions and regulatory mechanisms of various PTMs: phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation/deSUMOylation and oxidation/reduction, in regulating the subcellular localization, protein stability and the transcriptional activity of BES1/BZR1. We also discuss the current knowledge about the BES1/BZR1 interactors mediating the dynamic nucleocytoplasmic shuttling of BES1 and BZR1.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"1544-1551"},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Csaba Péter, Éva Ádám, Cornelia Klose, Gábor Grézal, Anita Hajdu, Gábor Steinbach, László Kozma-Bognár, Dániel Silhavy, Ferenc Nagy, András Viczián
{"title":"Phytochrome C and Low Temperature Promote the Protein Accumulation and Red-Light Signaling of Phytochrome D.","authors":"Csaba Péter, Éva Ádám, Cornelia Klose, Gábor Grézal, Anita Hajdu, Gábor Steinbach, László Kozma-Bognár, Dániel Silhavy, Ferenc Nagy, András Viczián","doi":"10.1093/pcp/pcae089","DOIUrl":"10.1093/pcp/pcae089","url":null,"abstract":"<p><p>Light affects almost every aspect of plant development. It is perceived by photoreceptors, among which phytochromes (PHY) are responsible for monitoring the red and far-red spectrum. Arabidopsis thaliana possesses five phytochrome genes (phyA-phyE). Whereas functions of phyA and phyB are extensively studied, our knowledge of other phytochromes is still rudimentary. To analyze phyD function, we expressed it at high levels in different phytochrome-deficient genetic backgrounds. Overexpressed phyD-YFP can govern effective light signaling but only at low temperatures and in cooperation with functional phyC. Under these conditions, phyD-YFP accumulates to high levels, and opposite to phyB, this pool is stable in light. By comparing the photoconvertible phyD-YFP and phyB levels and their signaling in continuous and pulsed irradiation, we showed that phyD-YFP is a less efficient photoreceptor than phyB. This conclusion is supported by the facts that only a part of the phyD-YFP pool is photoconvertible and that thermal reversion of phyD-YFP is faster than that of phyB. Our data suggest that the temperature-dependent function of phyD is based on the amount of phyD protein and not on its Pfr stability, as described for phyB. We also found that phyD-YFP and phyB-GFP are associated with strongly overlapping genomic locations and are able to mediate similar changes in gene expression; however, the efficiency of phyD-YFP is lower. Based on these data, we propose that under certain conditions, synergistic interaction of phyD and phyC can substitute phyB function in seedlings and in adult plants and thus increases the ability of plants to respond more flexibly to environmental changes.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"1717-1735"},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}