{"title":"Identification of a Novel Stomatal Opening Chemical, PP242, That Inhibits Early Abscisic Acid Signal Transduction in Guard Cells.","authors":"Airi Oh, Riku Kimura, Shinpei Inoue, Taiyo Sato, Yuki Hayashi, Ayato Sato, Yohei Takahashi, Toshinori Kinoshita","doi":"10.1093/pcp/pcaf013","DOIUrl":null,"url":null,"abstract":"<p><p>Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase. However, the signaling pathways that regulate the stomatal aperture remain unclear. Previously, we identified a target of rapamycin (TOR) inhibitor, temsirolimus, to induce stomatal opening through chemical screening. In the present study, we further investigated other TOR inhibitors and identified PP242 as a novel stomatal opening chemical. PP242 induced stomatal opening even in the dark, as well as phosphorylation of the penultimate Thr of PM H+-ATPase in guard cells. Interestingly, PP242 completely suppressed ABA-induced stomatal closure, and inhibited ABA-induced activation of SNF1-related protein kinase 2s (SnRK2s), which are essential kinases for ABA signal transduction in guard cells. In vitro biochemical analysis revealed that PP242 did not directly inhibit SnRK2 but rather inhibited upstream ABA signaling components, specifically B3 clade Raf-like kinases. A quadruple mutant of B3 clade Raf-like kinases exhibited an open stoma phenotype that resembled the effect of PP242. However, PP242 still induced stomatal opening in this mutant, suggesting that PP242 also targets other guard cell components. Together, these results reveal that PP242 induces stomatal opening partly by inhibiting steady-state ABA signal transduction.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcaf013","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase. However, the signaling pathways that regulate the stomatal aperture remain unclear. Previously, we identified a target of rapamycin (TOR) inhibitor, temsirolimus, to induce stomatal opening through chemical screening. In the present study, we further investigated other TOR inhibitors and identified PP242 as a novel stomatal opening chemical. PP242 induced stomatal opening even in the dark, as well as phosphorylation of the penultimate Thr of PM H+-ATPase in guard cells. Interestingly, PP242 completely suppressed ABA-induced stomatal closure, and inhibited ABA-induced activation of SNF1-related protein kinase 2s (SnRK2s), which are essential kinases for ABA signal transduction in guard cells. In vitro biochemical analysis revealed that PP242 did not directly inhibit SnRK2 but rather inhibited upstream ABA signaling components, specifically B3 clade Raf-like kinases. A quadruple mutant of B3 clade Raf-like kinases exhibited an open stoma phenotype that resembled the effect of PP242. However, PP242 still induced stomatal opening in this mutant, suggesting that PP242 also targets other guard cell components. Together, these results reveal that PP242 induces stomatal opening partly by inhibiting steady-state ABA signal transduction.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.