Plant and Cell Physiology最新文献

筛选
英文 中文
Minimized dark consumption of Calvin cycle intermediates facilitates the initiation of photosynthesis in Synechocystis sp. PCC 6803. 将卡尔文循环中间产物的暗消耗减至最低可促进 Synechocystis sp. PCC 6803 开始光合作用。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-06 DOI: 10.1093/pcp/pcae102
Kenya Tanaka, Akihiko Kondo, Tomohisa Hasunuma
{"title":"Minimized dark consumption of Calvin cycle intermediates facilitates the initiation of photosynthesis in Synechocystis sp. PCC 6803.","authors":"Kenya Tanaka, Akihiko Kondo, Tomohisa Hasunuma","doi":"10.1093/pcp/pcae102","DOIUrl":"https://doi.org/10.1093/pcp/pcae102","url":null,"abstract":"<p><p>Cyanobacteria intricately regulate their metabolic pathways during the diurnal cycle to ensure survival and growth. Under dark conditions, the breakdown of glycogen, an energy reserve, in these organisms replenishes Calvin cycle intermediates, especially downstream glycolytic metabolites, which are necessary for photosynthesis initiation upon light irradiation. However, it remains unclear how the accumulation of these intermediates is maintained in the dark despite limited glycogen availability. Therefore, in this study, we investigated the regulation of downstream glycolytic metabolites of the Calvin cycle under dark and light treatment using Synechocystis sp. PCC 6803. Our results showed that during the dark period, low pyruvate kinase (Pyk) activity ensured metabolite accumulation, while endogenous Pyk overexpression significantly lowered the accumulation of glycolytic intermediates. Remarkably, wild type Synechocystis maintained oxygen evolution ability throughout dark treatment for over 2 d, while Pyk overexpression resulted in decreased oxygen evolution after 16 h of dark treatment. These results indicated that limiting Pyk activity via darkness treatment facilitates photosynthetic initiation by maintaining glycolytic intermediates. Similarly, phosphoenolpyruvate carboxylase (PepC) overexpression decreased oxygen evolution under dark treatment; however, its effect was lower than that of Pyk. Further, we noted that as PepC overexpression decreased the levels of glycolytic intermediates in the dark, sugar phosphates in the Calvin-Benson-Bassham (CBB) cycle showed high accumulation, suggesting that sugar phosphates play important roles in supporting photosynthesis initiation. Therefore, our study highlights the importance of controlling the metabolic pathways through which glycolytic and CBB cycle intermediates are consumed (defined as cataplerosis of CBB cycle) to ensure stable photosynthesis.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of Phycourobilin Synthase: PubS to a Two-Electron Reductase. 植物胭脂虫素合成酶工程:PubS 到双电子还原酶。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-04 DOI: 10.1093/pcp/pcae098
Keita Miyake, Saya Iwata, Rei Narikawa
{"title":"Engineering of Phycourobilin Synthase: PubS to a Two-Electron Reductase.","authors":"Keita Miyake, Saya Iwata, Rei Narikawa","doi":"10.1093/pcp/pcae098","DOIUrl":"https://doi.org/10.1093/pcp/pcae098","url":null,"abstract":"<p><p>Phycourobilin:ferredoxin oxidoreductase (PubS) belongs to the ferredoxin-dependent bilin reductase (FDBR) family and catalyzes the reduction of the C15=C16 double bond, followed by the C4=C5 double bond of biliverdin IXα to produce phycourobilin. Among the diverse FDBR enzymes that catalyze site-specific reduction reactions of bilins, PubS lineage is the only one that reduces the C4=C5 double bond. This family can be broadly divided into four-electron reduction enzymes, which catalyze two successive two-electron reductions, such as PubS, and two-electron reduction enzymes, which catalyze a single two-electron reduction. The crystal structures of diverse FDBRs, excluding PubS, have unraveled that there are two distinct binding modes in the substrate-binding pocket. In this study, we focused on the arginine (Arg) residues that is considered crucial for substrate-binding mode in two-electron reduction enzymes. Through sequence alignment and comparison with the predicted structure of PubS, we identified a residue in PubS that corresponds to the Arg residue in the two-electron reduction enzymes. We further introduced mutations to avoid the steric hindrance associated with changes in the binding mode. Biochemical characterization of these variants showed that we successfully modified PubS from a four-electron reduction enzyme to a two-electron reduction enzyme with the accumulation of radicals. Our results provide insight into the molecular mechanisms of the chromophore binding mode and proton donation from acidic residues.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Promoters and Subcellular Localization for Constitutive Transgene Expression in Marchantia polymorpha. 优化启动子和亚细胞定位,以实现马钱子转基因的组成型表达。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae063
Sze Wai Tse, Davide Annese, Facundo Romani, Fernando Guzman-Chavez, Ignacy Bonter, Edith Forestier, Eftychios Frangedakis, Jim Haseloff
{"title":"Optimizing Promoters and Subcellular Localization for Constitutive Transgene Expression in Marchantia polymorpha.","authors":"Sze Wai Tse, Davide Annese, Facundo Romani, Fernando Guzman-Chavez, Ignacy Bonter, Edith Forestier, Eftychios Frangedakis, Jim Haseloff","doi":"10.1093/pcp/pcae063","DOIUrl":"10.1093/pcp/pcae063","url":null,"abstract":"<p><p>Marchantia polymorpha has become an important model system for comparative studies and synthetic biology. The systematic characterization of genetic elements would make heterologous gene expression more predictable in this test bed for gene circuit assembly and bioproduction. Yet, the toolbox of genetic parts for Marchantia includes only a few constitutive promoters that need benchmarking to assess their utility. We compared the expression patterns of previously characterized and new constitutive promoters. We found that driving expression with the double enhancer version of the cauliflower mosaic virus 35S promoter (pro35S × 2) provided the highest yield of proteins, although it also inhibits the growth of transformants. In contrast, promoters derived from the Marchantia genes for ETHYLENE RESPONSE FACTOR 1 and the CLASS II HOMEODOMAIN-LEUCINE ZIPPER protein drove expression to higher levels across all tissues without a growth penalty and can provide intermediate levels of gene expression. In addition, we showed that the cytosol is the best subcellular compartment to target heterologous proteins for higher levels of expression without a significant growth burden. To demonstrate the potential of these promoters in Marchantia, we expressed RUBY, a polycistronic betalain synthesis cassette linked by P2A sequences, to demonstrate coordinated expression of metabolic enzymes. A heat-shock-inducible promoter was used to further mitigate growth burdens associated with high amounts of betalain accumulation. We have expanded the existing tool kit for gene expression in Marchantia and provided new resources for the Marchantia research community.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome-Scale Genome Assembly and Characterization of Top-Quality Japanese Green Tea Cultivar 'Seimei'. 日本顶级绿茶栽培品种 "清明 "的染色体组规模基因组组装和特征描述。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae060
Yoshihiro Kawahara, Junichi Tanaka, Kazuhiro Takayama, Toshiyuki Wako, Akiko Ogino, Shuya Yamashita, Fumiya Taniguchi
{"title":"Chromosome-Scale Genome Assembly and Characterization of Top-Quality Japanese Green Tea Cultivar 'Seimei'.","authors":"Yoshihiro Kawahara, Junichi Tanaka, Kazuhiro Takayama, Toshiyuki Wako, Akiko Ogino, Shuya Yamashita, Fumiya Taniguchi","doi":"10.1093/pcp/pcae060","DOIUrl":"10.1093/pcp/pcae060","url":null,"abstract":"<p><p>Japanese green tea, an essential beverage in Japanese culture, is characterized by the initial steaming of freshly harvested leaves during production. This process efficiently inactivates endogenous enzymes such as polyphenol oxidases, resulting in the production of sencha, gyokuro and matcha that preserves the vibrant green color of young leaves. Although genome sequences of several tea cultivars and germplasms have been published, no reference genome sequences are available for Japanese green tea cultivars. Here, we constructed a reference genome sequence of the cultivar 'Seimei', which is used to produce high-quality Japanese green tea. Using the PacBio HiFi and Hi-C technologies for chromosome-scale genome assembly, we obtained 15 chromosome sequences with a total genome size of 3.1 Gb and an N50 of 214.9 Mb. By analyzing the genomic diversity of 23 Japanese tea cultivars and lines, including the leading green tea cultivars 'Yabukita' and 'Saemidori', it was revealed that several candidate genes could be related to the characteristics of Japanese green tea. The reference genome of 'Seimei' and information on genomic diversity of Japanese green tea cultivars should provide crucial information for effective breeding of such cultivars in the future.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the Arabidopsis Mutant oligocellula6-D Reveals the Importance of Leaf Initiation in Determining the Final Leaf Size. 拟南芥突变体寡细胞6-D的特征揭示了叶片萌发在决定最终叶片大小方面的重要性。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae067
Risa Takeda, Shoki Sato, Takumi Ui, Hirokazu Tsukaya, Gorou Horiguchi
{"title":"Characterization of the Arabidopsis Mutant oligocellula6-D Reveals the Importance of Leaf Initiation in Determining the Final Leaf Size.","authors":"Risa Takeda, Shoki Sato, Takumi Ui, Hirokazu Tsukaya, Gorou Horiguchi","doi":"10.1093/pcp/pcae067","DOIUrl":"10.1093/pcp/pcae067","url":null,"abstract":"<p><p>The leaf is a determinate organ with a final size under genetic control. Numerous factors that regulate the final leaf size have been identified in Arabidopsis thaliana; although most of these factors play their roles during the growth of leaf primordia, much less is known about leaf initiation and its effects on the final leaf size. In this study, we characterized oligocellula6-D (oli6-D), a semidominant mutant of A. thaliana with smaller leaves than the wild type (WT) due to its reduced leaf cell numbers. A time-course analysis showed that oli6-D had approximately 50% fewer leaf cells even immediately after leaf initiation; this difference was maintained throughout leaf development. Next-generation sequencing showed that oli6-D had chromosomal duplications involving 2-kb and 3-Mb regions of chromosomes 2 and 4, respectively. Several duplicated genes examined had approximately 2-fold higher expression levels, and at least one gene acquired a new intron/exon structure due to a chromosome fusion event. oli6-D showed reduced auxin responses in leaf primordia, primary roots and embryos, as well as reduced apical dominance and partial auxin-resistant root growth. CRISPR-associated protein-9-mediated genome editing enabled the removal of a 3-Mb duplicated segment, the largest targeted deletion in plants thus far. As a result, oli6-D restored the WT leaf phenotypes, demonstrating that oli6-D is a gain-of-function mutant. Our results suggest a new regulatory point of leaf size determination that functions at a very early stage of leaf development and is negatively regulated by one or more genes located in the duplicated chromosomal segments.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity. 昆虫的秘密武器:口腔分泌物鸡尾酒及其对宿主免疫力的调节。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae059
Vinod Kumar Prajapati, Vishakh Vijayan, Jyothilakshmi Vadassery
{"title":"Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity.","authors":"Vinod Kumar Prajapati, Vishakh Vijayan, Jyothilakshmi Vadassery","doi":"10.1093/pcp/pcae059","DOIUrl":"10.1093/pcp/pcae059","url":null,"abstract":"<p><p>Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micromorphological and Chemical Characterization of Drimys winteri Leaf Surfaces: The Secondary Alcohols Forming Epicuticular Wax Crystals Are Accompanied by Alkanediol, Alkanetriol and Ketol Derivatives. Drimys winteri 叶子表面的微观形态和化学特征:烷二醇、烷三醇和酮醇衍生物是形成表皮蜡晶体的仲醇。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae053
Zhonghang Zhang, Dwiti Mistry, Reinhard Jetter
{"title":"Micromorphological and Chemical Characterization of Drimys winteri Leaf Surfaces: The Secondary Alcohols Forming Epicuticular Wax Crystals Are Accompanied by Alkanediol, Alkanetriol and Ketol Derivatives.","authors":"Zhonghang Zhang, Dwiti Mistry, Reinhard Jetter","doi":"10.1093/pcp/pcae053","DOIUrl":"10.1093/pcp/pcae053","url":null,"abstract":"<p><p>The cuticle is a hydrophobic coating of most aerial plant surfaces crucial for limiting non-stomatal water loss. Plant cuticles consist of the lipid polyester cutin and associated waxes with compositions varying widely between plant species and organs. Here, we aimed to provide a comparative analysis of the dark-glossy adaxial and pale-glaucous abaxial sides of Drimys winteri (Winteraceae) leaves. Scanning electron microscopy showed nanotubular wax crystals lining the entire abaxial side of the leaf (including stomatal pores), while the adaxial side had patches of mixed platelet/tubule crystals and smooth areas between them. Consecutive treatments for wax removal and cutin depolymerization revealed that the waxes were deposited on a cutin network with micron-scale cavities across the entire abaxial surface including the stomata pores, and on a microscopically smooth cutin surface on the adaxial side of the leaf. Gas chromatography coupled to mass spectrometry and flame ionization detection showed that the wax mixtures on both sides of the leaf were complex mixtures of very-long-chain compounds dominated by the secondary alcohol nonacosan-10-ol and alkanediols with one hydroxyl on C-10. It is therefore very likely that the characteristic tubular wax crystals of both leaf sides are formed by these alcohols and diols. Further secondary alcohols and alkanediols, as well as ketols and alkanetriols with one functional group on C-10, were identified based on mass spectral fragmentation patterns. The similarities between all these mid-chain-functionalized compounds suggest that they are derived from nonacosan-10-ol via regio-specific hydroxylation reactions, likely catalyzed by three P450-dependent monooxygenases with different regio-specificities.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PLETHORA Homolog in Marchantia polymorpha is Essential for Meristem Maintenance, Developmental Progression, and Redox Homeostasis. Marchantia polymorpha 中的 PLETHORA 同源物对分生组织的维持、发育进程和氧化还原平衡至关重要。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae055
Jing Fu, Congye Zhou, Fei Ma, Jing Zhao, Fei Yu, Hongchang Cui
{"title":"The PLETHORA Homolog in Marchantia polymorpha is Essential for Meristem Maintenance, Developmental Progression, and Redox Homeostasis.","authors":"Jing Fu, Congye Zhou, Fei Ma, Jing Zhao, Fei Yu, Hongchang Cui","doi":"10.1093/pcp/pcae055","DOIUrl":"10.1093/pcp/pcae055","url":null,"abstract":"<p><p>To adapt to a terrestrial habitat, the ancestors of land plants must have made several morphological and physiological modifications, such as a meristem allowing for three-dimensional growth, rhizoids for water and nutrient uptake, air pore complexes or stomata that permit air exchange, and a defense system to cope with oxidative stress that occurs frequently in a terrestrial habitat. To understand how the meristem was determined during land plant evolution, we characterized the function of the closest PLETHORA homolog in the liverwort Marchantia polymorpha, which we named MpPLT. Through a transgenic approach, we showed that MpPLT is expressed not only in the stem cells at the apical notch but also in the proliferation zone of the meristem, as well as in cells that form the air-pore complex and rhizoids. Using the CRISPR method we then created mutants for MpPLT and found that the mutants are not only defective in meristem maintenance but also compromised in air-pore complex and rhizoid development. Strikingly, at later developmental stages, numerous gemma-like structures were formed in Mpplt mutants, suggesting developmental arrest. Further experiments indicated that MpPLT promotes plant growth by regulating MpWOX, which shared a similar expression pattern to MpPLT, and genes involved in auxin and cytokinin signaling pathways. Through transcriptome analyses, we found that MpPLT also has a role in redox homeostasis and that this role is essential for plant growth. Taken together, these results suggest that MpPLT has a crucial role in liverwort growth and development and hence may have played a crucial role in early land plant evolution.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803. Synechocystis Sp.PCC 6803.
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae062
Tomáš Zavřel, Anna Segečová, László Kovács, Martin Lukeš, Zoltán Novák, Anne-Christin Pohland, Milán Szabó, Boglárka Somogyi, Ondřej Prášil, Jan Červený, Gábor Bernát
{"title":"A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803.","authors":"Tomáš Zavřel, Anna Segečová, László Kovács, Martin Lukeš, Zoltán Novák, Anne-Christin Pohland, Milán Szabó, Boglárka Somogyi, Ondřej Prášil, Jan Červený, Gábor Bernát","doi":"10.1093/pcp/pcae062","DOIUrl":"10.1093/pcp/pcae062","url":null,"abstract":"<p><p>Cyanobacteria play a key role in primary production in both oceans and fresh waters and hold great potential for sustainable production of a large number of commodities. During their life, cyanobacteria cells need to acclimate to a multitude of challenges, including shifts in intensity and quality of incident light. Despite our increasing understanding of metabolic regulation under various light regimes, detailed insight into fitness advantages and limitations under shifting light quality remains underexplored. Here, we study photo-physiological acclimation in the cyanobacterium Synechocystis sp. PCC 6803 throughout the photosynthetically active radiation (PAR) range. Using light emitting diodes (LEDs) with qualitatively different narrow spectra, we describe wavelength dependence of light capture, electron transport and energy transduction to main cellular pools. In addition, we describe processes that fine-tune light capture, such as state transitions, or the efficiency of energy transfer from phycobilisomes to photosystems (PS). We show that growth was the most limited under blue light due to inefficient light harvesting, and that many cellular processes are tightly linked to the redox state of the plastoquinone (PQ) pool, which was the most reduced under red light. The PSI-to-PSII ratio was low under blue photons, however, it was not the main growth-limiting factor, since it was even more reduced under violet and near far-red lights, where Synechocystis grew faster compared to blue light. Our results provide insight into the spectral dependence of phototrophic growth and can provide the foundation for future studies of molecular mechanisms underlying light acclimation in cyanobacteria, leading to light optimization in controlled cultivations.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rice SRO1a Contributes to Xanthomonas TAL Effector-mediated Expression of Host Susceptible Genes. 水稻 SRO1a 有助于黄单胞菌 TAL 效应器介导的宿主易感基因的表达。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae057
Satomi Yoshimura, Ayaka Yoshihisa, Yusei Okamoto, Haruna Hirano, Yuina Nakai, Koji Yamaguchi, Tsutomu Kawasaki
{"title":"Rice SRO1a Contributes to Xanthomonas TAL Effector-mediated Expression of Host Susceptible Genes.","authors":"Satomi Yoshimura, Ayaka Yoshihisa, Yusei Okamoto, Haruna Hirano, Yuina Nakai, Koji Yamaguchi, Tsutomu Kawasaki","doi":"10.1093/pcp/pcae057","DOIUrl":"10.1093/pcp/pcae057","url":null,"abstract":"<p><p>Xanthomonas species infect many important crops and cause huge yield loss. These pathogens deliver transcription activator-like (TAL) effectors into the cytoplasm of plant cells. TAL effectors move to host nuclei, directly bind to the promoters of host susceptible genes, and activate their transcription. However, the molecular mechanisms by which TAL effectors induce host transcription remain unclear. We herein demonstrated that TAL effectors interacted with the SIMILAR TO RCD ONE (SRO) family proteins OsSRO1a and OsSRO1b in nuclei. A transactivation assay using rice protoplasts indicated that OsSRO1a and OsSRO1b enhanced the activation of the OsSWEET14 promoter by the TAL effector AvrXa7. The AvrXa7-mediated expression of OsSWEET14 was significantly reduced in ossro1a mutants. However, the overexpression of OsSRO1a increased disease resistance by up-regulating the expression of defense-related genes, such as WRKY62 and PBZ1. This was attributed to OsSRO1a and OsSRO1b also enhancing the transcriptional activity of WRKY45, a direct regulator of WRKY62 expression. Therefore, OsSRO1a and OsSRO1b appear to positively contribute to transcription mediated by bacterial TAL effectors and rice transcription factors.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信