Wenying Liao, Runze Guo, Jie Li, Na Liu, Lixi Jiang, James Whelan, Huixia Shou
{"title":"CRISPR/Cas9-mediated mutagenesis of SEED FATTY ACID REDUCER genes significantly increased seed oil content in soybean.","authors":"Wenying Liao, Runze Guo, Jie Li, Na Liu, Lixi Jiang, James Whelan, Huixia Shou","doi":"10.1093/pcp/pcae148","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing seed oil content (SOC) is an important breeding goal for soybean breeding. While significant efforts have been made to improve SOC through metabolic pathway engineering, research to increase soybean SOC by reducing lipid degradation and fatty acid (FA) decomposition during seed maturation process is limited. Seed fatty acid reducers (SFARs) are members of the GDSL enzyme family and play a crucial role in lipid metabolism. Among them, a pair of the GmSFAR4 genes is highly expressed in soybean seeds during seed desiccation and germination. In the study, GmSFAR4a/b double mutants were generated using CRISPR/Cas9-mediated gene editing technique. The seed FA content of GmSFAR4a/b double mutants was significantly increased by ∼8% compared to wild type when grown in greenhouse, and ∼17% when grown in the field, without any adverse effects on seed vitality and plant growth. Our work enriches the understanding of soybean seed oil metabolism and provides a new approach to increase soybean SOC.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"273-284"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae148","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing seed oil content (SOC) is an important breeding goal for soybean breeding. While significant efforts have been made to improve SOC through metabolic pathway engineering, research to increase soybean SOC by reducing lipid degradation and fatty acid (FA) decomposition during seed maturation process is limited. Seed fatty acid reducers (SFARs) are members of the GDSL enzyme family and play a crucial role in lipid metabolism. Among them, a pair of the GmSFAR4 genes is highly expressed in soybean seeds during seed desiccation and germination. In the study, GmSFAR4a/b double mutants were generated using CRISPR/Cas9-mediated gene editing technique. The seed FA content of GmSFAR4a/b double mutants was significantly increased by ∼8% compared to wild type when grown in greenhouse, and ∼17% when grown in the field, without any adverse effects on seed vitality and plant growth. Our work enriches the understanding of soybean seed oil metabolism and provides a new approach to increase soybean SOC.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.