Plant and Cell Physiology最新文献

筛选
英文 中文
PaWOX3 and PaWOX3B Regulate Flower Number and the Lip Symmetry of Phalaenopsis. PaWOX3和PaWOX3B调控蝴蝶兰的花朵数量和花唇对称性
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae069
Hsing-Fun Hsu, Ya-Chun Li, Yi-Hsuan Shen, Chang-Hsien Yang
{"title":"PaWOX3 and PaWOX3B Regulate Flower Number and the Lip Symmetry of Phalaenopsis.","authors":"Hsing-Fun Hsu, Ya-Chun Li, Yi-Hsuan Shen, Chang-Hsien Yang","doi":"10.1093/pcp/pcae069","DOIUrl":"10.1093/pcp/pcae069","url":null,"abstract":"<p><p>The standout characteristic of the orchid perianth is the transformation of the upper median petal into a distinctively formed lip, which gives orchid flowers their typically zygomorphic symmetry and makes them the most popular ornamental plants worldwide. To study orchid flower development, two WUSCHEL-related homeobox (WOX) genes, PaWOX3 and PaWOX3B, were identified in Phalaenopsis. PaWOX3 and PaWOX3B mRNAs accumulate abundantly during early reproductive development and perianths of young buds, significantly decreasing in mature flowers and absent in vegetative leaves and roots. PaWOX3 and PaWOX3B virus-induced gene silencing (VIGS) knockdown in Phalaenopsis significantly reduces floral bud numbers, suggesting that PaWOX3/PaWOX3B may be involved in flower initiation. Transgenic Arabidopsis ectopically expressing repressor forms of PaWOX3/PaWOX3B and their Oncidium ortholog, OnPRS, exhibit lateral organ development defects, implicating these genes likely have function in regulating growth and differentiation for lateral organs. Neither PaWOX3, PaWOX3B single nor PaWOX3/PaWOX3B double VIGS Phalaenopsis altered the flower morphology. Interestingly, double silencing of PaWOX3 or PaWOX3B with OAGL6-2, which controlled the identity/formation of lips, altered the symmetry of 'BigLip' produced in OAGL6-2 VIGS. This result indicated that the levels of PaWOX3/PaWOX3B are still sufficient to maintain the symmetry for the OAGL6-2 VIGS 'BigLip'. However, the symmetry of the OAGL6-2 VIGS 'BigLip' cannot be maintained once the expression of PaWOX3 or PaWOX3B is further reduced. Thus, in addition to controlling lip identity, this study further found that OAGL6-2 could cooperate with functionally redundant PaWOX3/PaWOX3B in maintaining the symmetric axis of lip.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wheat Cybrid Plants, OryzaWheat, Regenerated from Wheat-Rice Hybrid Zygotes via in Vitro Fertilization System Possess Wheat-Rice Hybrid Mitochondria. 通过体外受精系统从小麦-水稻杂交种子实体再生的小麦杂交植物 OryzaWheat 具有小麦-水稻杂交种线粒体。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-03 DOI: 10.1093/pcp/pcae074
Tety Maryenti, Shizuka Koshimizu, Nonoka Onda, Takayoshi Ishii, Kentaro Yano, Takashi Okamoto
{"title":"Wheat Cybrid Plants, OryzaWheat, Regenerated from Wheat-Rice Hybrid Zygotes via in Vitro Fertilization System Possess Wheat-Rice Hybrid Mitochondria.","authors":"Tety Maryenti, Shizuka Koshimizu, Nonoka Onda, Takayoshi Ishii, Kentaro Yano, Takashi Okamoto","doi":"10.1093/pcp/pcae074","DOIUrl":"10.1093/pcp/pcae074","url":null,"abstract":"<p><p>Hybridization generates biodiversity, and wide hybridization plays a pivotal role in enhancing and broadening the useful attributes of crops. The hybridization barrier between wheat and rice, the two most important cereals, was recently overcome by in vitro production of allopolyploid wheat-rice hybrid zygotes, which can develop and grow into mature plants. In the study, genomic sequences and compositions of the possible hybrid plants were investigated through short- and long-read sequencing analyses and fluorescence in situ hybridization (FISH)-based visualization. The possible hybrid possessed whole wheat nuclear and cytoplasmic DNAs and rice mitochondrial (mt) DNA, along with variable retention rates of rice mtDNA ranging from 11% to 47%. The rice mtDNA retained in the wheat cybrid, termed Oryzawheat, can be transmitted across generations. In addition to mitochondrial hybridization, translocation of rice chromosome 1 into wheat chromosome 6A was detected in a F1 hybrid individual. OryzaWheat can provide a new horizon for utilizing inter-subfamily genetic resources among wheat and rice belonging to different subfamilies, Pooideae and Ehrhartoideae, respectively.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic Insights into Trichome Responses to Elevated Elemental Stress in Cation Exchanger (CAX) Mutants. 蛋白质组学揭示阳离子交换器 (CAX) 突变体中毛状体对高元素压力的响应。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-02 DOI: 10.1093/pcp/pcae097
Qi Guo, Shayan Sarkar, Tracy Punshon, Ryan Tappero, J Bronwyn Barkla, Kendal D Hirschi
{"title":"Proteomic Insights into Trichome Responses to Elevated Elemental Stress in Cation Exchanger (CAX) Mutants.","authors":"Qi Guo, Shayan Sarkar, Tracy Punshon, Ryan Tappero, J Bronwyn Barkla, Kendal D Hirschi","doi":"10.1093/pcp/pcae097","DOIUrl":"https://doi.org/10.1093/pcp/pcae097","url":null,"abstract":"<p><p>Research on elemental distribution in plants is crucial for understanding nutrient uptake, environmental adaptation, and optimizing agricultural practices for sustainable food production. Plant trichomes, with their self-contained structures and easy accessibility, offer a robust model system for investigating elemental repartitioning. Transport proteins, such as the four functional cation exchangers (CAXs) in Arabidopsis, are low-affinity, high-capacity transporters primarily located on the vacuole. Mutants in these transporters have been partially characterized, with one of the phenotypes of the CAX1 mutant being altered tolerance to low-oxygen conditions. A simple visual screen demonstrated trichome density and morphology in cax1 and quadruple CAX (cax1-4: qKO) mutants remained unaltered. Here we used SXRF (Synchrotron X-Ray Fluorescence) to show that trichomes in CAX-deficient lines accumulated high levels of chlorine, potassium, calcium, and manganese. Proteomic analysis on isolated Arabidopsis trichomes. showed changes in protein abundance in response to changes in element accumulation. The CAX mutants showed an increased abundance of plasma membrane ATPase and vacuolar H-pumping proteins, and proteins associated with water movement and endocytosis, while also showing changes in proteins associated with the regulation of plasmodesmata. These findings advance our understanding of the integration of CAX transport with elemental homeostasis within trichomes and shed light on how plants modulate protein abundance under conditions of altered elemental levels.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diurnal.plant.tools in 2024: expanding to Marchantia polymorpha and four angiosperms. 2024 年的 Diurnal.plant.tools:扩展到 Marchantia polymorpha 和四种被子植物。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-09-02 DOI: 10.1093/pcp/pcae099
Qiao Wen Tan, Emmanuel Tan, Marek Mutwil
{"title":"Diurnal.plant.tools in 2024: expanding to Marchantia polymorpha and four angiosperms.","authors":"Qiao Wen Tan, Emmanuel Tan, Marek Mutwil","doi":"10.1093/pcp/pcae099","DOIUrl":"https://doi.org/10.1093/pcp/pcae099","url":null,"abstract":"<p><p>Diurnal gene expression is a pervasive phenomenon occurring across all kingdoms of life, orchestrating adaptive responses to daily environmental fluctuations and thus enhancing organismal fitness. Our understanding of the plant circadian clock is primarily derived from studies in Arabidopsis and direct comparisons are difficult due to differences in gene family sizes. To this end, the identification of functional orthologs based on diurnal and tissue expression is necessary. The diurnal.plant.tools database constitutes a repository of gene expression profiles from 17 members of the Archaeplastida lineage, with built-in tools facilitating cross-species comparisons. In this database update, we expand the dataset with diurnal gene expression from 4 agriculturally significant crop species and Marchantia, a plant of evolutionary significance. Notably, the inclusion of diurnal gene expression data for Marchantia enables researchers to glean insights into the evolutionary trajectories of the circadian clock and other biological processes spanning from algae to angiosperms. Moreover, integrating diurnal gene expression data with datasets from related gene co-expression databases, such as CoNekt-Plants and CoNekt-Stress, which contain gene expression data for tissue and perturbation experiments, provides a comprehensive overview of gene functions across diverse biological contexts. This expanded database serves as a valuable resource for elucidating the intricacies of diurnal gene regulation and its evolutionary underpinnings in plant biology.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heritable Tissue-Culture-Free Gene Editing in Nicotiana benthamiana through Viral Delivery of SpCas9 and sgRNA. 通过病毒递送 SpCas9 和 sgRNA 在烟草中进行可遗传的无组织培养基因编辑。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-08-31 DOI: 10.1093/pcp/pcae100
Tetsuya Yoshida, Masayuki Ishikawa, Seiichi Toki, Kazuhiro Ishibashi
{"title":"Heritable Tissue-Culture-Free Gene Editing in Nicotiana benthamiana through Viral Delivery of SpCas9 and sgRNA.","authors":"Tetsuya Yoshida, Masayuki Ishikawa, Seiichi Toki, Kazuhiro Ishibashi","doi":"10.1093/pcp/pcae100","DOIUrl":"https://doi.org/10.1093/pcp/pcae100","url":null,"abstract":"<p><p>Conventional plant gene editing requires laborious tissue-culture-mediated transformation, which restricts the range of applicable plant species. In this study, we developed a heritable and tissue-culture-free gene editing method in Nicotiana benthamiana using tobacco ringspot virus (TRSV) as a vector for in planta delivery of Cas9 and single-guide RNA (sgRNA) to shoot apical meristems. Agrobacterium-mediated inoculation of the TRSV vector induced systemic and heritable gene editing in NbPDS. Transient downregulation of RNA silencing enhanced gene editing efficiency, resulting in an order of magnitude increase (0.8% to 13.2%) in the frequency of transgenerational gene editing. While the TRSV system had a preference for certain sgRNA sequences, co-inoculation of a TRSV vector carrying only Cas9 and a tobacco rattle virus vector carrying sgRNA successfully introduced systemic mutations with all five tested sgRNAs. Extensively gene-edited lateral shoots occasionally grew from plants inoculated with the virus vectors, of which the transgenerational gene editing frequency ranged up to 100%. This virus-mediated heritable gene editing method makes plant gene editing easy, requiring only the inoculation of non-transgenic plants with a virus vector(s) to obtain gene-edited individuals.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A kinesin-like protein, KAC, is required for light-induced and actin-based chloroplast movement in Marchantia polymorpha. 一种驱动蛋白样蛋白 KAC 是光诱导和基于肌动蛋白的叶绿体运动所必需的。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-08-31 DOI: 10.1093/pcp/pcae101
Yoshiko Yamamoto-Negi, Takeshi Higa, Aino Komatsu, Kanta Sasaki, Kimitsune Ishizaki, Ryuichi Nishihama, Eiji Gotoh, Takayuki Kohchi, Noriyuki Suetsugu
{"title":"A kinesin-like protein, KAC, is required for light-induced and actin-based chloroplast movement in Marchantia polymorpha.","authors":"Yoshiko Yamamoto-Negi, Takeshi Higa, Aino Komatsu, Kanta Sasaki, Kimitsune Ishizaki, Ryuichi Nishihama, Eiji Gotoh, Takayuki Kohchi, Noriyuki Suetsugu","doi":"10.1093/pcp/pcae101","DOIUrl":"https://doi.org/10.1093/pcp/pcae101","url":null,"abstract":"<p><p>Chloroplasts accumulate on the cell surface under weak light conditions to efficiently capture light but avoid strong light to minimize photodamage. The blue light receptor phototropin regulates the chloroplast movement in various plant species. In Arabidopsis thaliana, phototropin mediates the light-induced chloroplast movement and positioning via specialized actin filaments on the chloroplasts, chloroplast-actin filaments. KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT (KAC) and CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1) are pivotal for chloroplast-actin-based chloroplast movement and positioning in land plants. However, the mechanisms by which KAC and CHUP1 regulate chloroplast movement and positioning remain unclear. In this study, we characterized KAC and CHUP1 orthologs in the liverwort Marchantia polymorpha, MpKAC and MpCHUP1, respectively. Their knockout mutants, Mpkack° and Mpchup1k°, impaired the light-induced chloroplast movement. Although Mpchup1k° showed mild chloroplast aggregation, Mpkack° displayed severe chloroplast aggregation, suggesting the greater contribution of MpKAC to the chloroplast anchorage to the plasma membrane. Analysis of the subcellular localization of the functional MpKAC-Citrine indicated that MpKAC-Citrine formed a punctate structure on the plasma membrane. Structure-function analysis of MpKAC revealed that a deletion of the conserved C-terminal domain abrogates the targeting to the plasma membrane and its function. A deletion of the N-terminal motor domain retained the plasma membrane targeting but abrogates the formation of punctate structure and showed severe defect in the light-induced chloroplast movement. Our findings suggest that the formation of the punctate structure on the plasma membrane of MpKAC is essential for chloroplast movement.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Vacuolar Sorting of the Borate Transporter BOR1 Requires the Adaptor Protein Complex AP-4 in Arabidopsis. 拟南芥中硼酸盐转运体 BOR1 的快速空泡分选需要适配蛋白复合体 AP-4。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-08-31 DOI: 10.1093/pcp/pcae096
Akira Yoshinari, Yutaro Shimizu, Takuya Hosokawa, Akihiko Nakano, Tomohiro Uemura, Junpei Takano
{"title":"Rapid Vacuolar Sorting of the Borate Transporter BOR1 Requires the Adaptor Protein Complex AP-4 in Arabidopsis.","authors":"Akira Yoshinari, Yutaro Shimizu, Takuya Hosokawa, Akihiko Nakano, Tomohiro Uemura, Junpei Takano","doi":"10.1093/pcp/pcae096","DOIUrl":"https://doi.org/10.1093/pcp/pcae096","url":null,"abstract":"<p><p>Plants maintain nutrient homeostasis by controlling the activities and abundance of nutrient transporters. In Arabidopsis thaliana, the borate (B) transporter BOR1 plays a role in the efficient translocation of B under low-B conditions. BOR1 undergoes polyubiquitination in the presence of sufficient B and is then transported to the vacuole via multivesicular bodies (MVBs) to prevent B accumulation in tissues at a toxic level. A previous study indicated that BOR1 physically interacts with µ subunits of adaptor protein complexes AP-3 and AP-4, both involved in vacuolar sorting pathways. In this study, we investigated the roles of AP-3 and AP-4 subunits in BOR1 trafficking in Arabidopsis. The lack of AP-3 subunits did not affect either vacuolar sorting or polar localization of BOR1-GFP, whereas the absence of AP-4 subunits resulted in a delay in high-B-induced vacuolar sorting without affecting polar localization. Super-resolution microscopy revealed a rapid sorting of BOR1-GFP into AP-4-positive spots in the trans-Golgi network (TGN) upon high-B supply. These results indicate that AP-4 is involved in sequestration of ubiquitinated BOR1 into a TGN-specific subdomain \"vacuolar-trafficking zone,\" and is required for efficient sorting to MVB and vacuole. Our findings elucidate the rapid vacuolar sorting process facilitated by AP-4 in plant nutrient transporters.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nutrient requirements shape the preferential habitat of Allorhizobium vitis VAR03-1, a commensal bacterium, in the rhizosphere of Arabidopsis thaliana. 养分需求决定了拟南芥根瘤菌 Allorhizobium vitis VAR03-1(一种共生细菌)的优先栖息地。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-08-24 DOI: 10.1093/pcp/pcae091
Niarsi Merry Hemelda, Jiyuan Bao, Megumi Watanabe, Hidenori Matsui, Kazuhiro Toyoda, Yuki Ichinose, Yoshiteru Noutoshi
{"title":"Nutrient requirements shape the preferential habitat of Allorhizobium vitis VAR03-1, a commensal bacterium, in the rhizosphere of Arabidopsis thaliana.","authors":"Niarsi Merry Hemelda, Jiyuan Bao, Megumi Watanabe, Hidenori Matsui, Kazuhiro Toyoda, Yuki Ichinose, Yoshiteru Noutoshi","doi":"10.1093/pcp/pcae091","DOIUrl":"https://doi.org/10.1093/pcp/pcae091","url":null,"abstract":"<p><p>A diverse range of commensal bacteria inhabit the rhizosphere, influencing host plant growth and responses to biotic and abiotic stresses. While root-released nutrients can define soil microbial habitats, the bacterial factors involved in plant-microbe interactions are not well characterized. In this study, we investigated the colonization patterns of two plant disease biocontrol agents, Allorhizobium vitis VAR03-1 and Pseudomonas protegens Cab57, in the rhizosphere of Arabidopsis thaliana using Murashige and Skoog (MS) agar medium. VAR03-1 formed colonies even at a distance from the roots, preferentially in the upper part, while Cab57 colonized only the root surface. The addition of sucrose to the agar medium resulted in excessive proliferation of VAR03-1, similar to its pattern without sucrose, whereas Cab57 formed colonies only near the root surface. Overgrowth of both bacterial strains upon nutrient supplementation inhibited host growth, independent of plant immune responses. This inhibition was reduced in the VAR03-1 ΔrecA mutant, which exhibited increased biofilm formation, suggesting that some activities associated with the free-living lifestyle rather than the sessile lifestyle may be detrimental to host growth. VAR03-1 grew in liquid MS medium with sucrose alone, while Cab57 required both sucrose and organic acids. Supplementation of sugars and organic acids allowed both bacterial strains to grow near and away from Arabidopsis roots in MS agar. These results suggest that nutrient requirements for bacterial growth may determine their growth habitats in the rhizosphere, with nutrients released in root exudates potentially acting as a limiting factor in harnessing microbiota.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chlorophyll Pigments and Their Synthetic Analogs. 叶绿素色素及其合成类似物。
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-08-22 DOI: 10.1093/pcp/pcae094
Hitoshi Tamiaki, Saki Kichishima
{"title":"Chlorophyll Pigments and Their Synthetic Analogs.","authors":"Hitoshi Tamiaki, Saki Kichishima","doi":"10.1093/pcp/pcae094","DOIUrl":"https://doi.org/10.1093/pcp/pcae094","url":null,"abstract":"<p><p>Oxygenic phototrophs use chlorophylls (Chls) as photosynthetically active pigments. A variety of Chl molecules have been found in photosynthetic eukaryotes including green plants, algae, and cyanobacteria. Here we review their molecular structures with stereochemistry, occurrence in light-harvesting antennas and reaction centers, biosyntheses in the late stage, chemical stabilities, and visible absorption maxima in diethyl ether. The observed maxima are comparable to those of semisynthetic Chl analogs, methyl pyropheophorbides, in dichloromethane. The effects of their peripheral substituents and core π-conjugation on the maxima of the monomeric states are discussed. Notably, the oxidation along the molecular x-axis in Chl-a produces its accessory pigments, Chls-b/c, and introduction of an electron-withdrawing formyl group along the y-axis perpendicular to the x-axis affords far-red light absorbing Chls-d/f.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chlorophyll Degradation and its Physiological Function. 叶绿素降解及其生理功能
IF 3.9 2区 生物学
Plant and Cell Physiology Pub Date : 2024-08-22 DOI: 10.1093/pcp/pcae093
Ayumi Tanaka, Hisashi Ito
{"title":"Chlorophyll Degradation and its Physiological Function.","authors":"Ayumi Tanaka, Hisashi Ito","doi":"10.1093/pcp/pcae093","DOIUrl":"https://doi.org/10.1093/pcp/pcae093","url":null,"abstract":"<p><p>Research on chlorophyll degradation has progressed significantly in recent decades. In the 1990s, the structure of linear tetrapyrrole, which is unambiguously a chlorophyll degradation product, was determined. From the 2000s until the 2010s, the major enzymes involved in chlorophyll degradation were identified, and the pheophorbide a oxygenase/phyllobilin pathway was established. This degradation pathway encompasses several steps: (1) initial conversion of chlorophyll b to 7-hydroxymethyl chlorophyll a; (2) conversion of 7-hydroxymethyl chlorophyll a to chlorophyll a; (3) dechelation of chlorophyll a to pheophytin a; (4) dephytylation of pheophytin a to pheophorbide a; (5) opening of the macrocycle to yield a red chlorophyll catabolite; and (6) conversion of red chlorophyll catabolite to phyllobilins. This pathway converts potentially harmful chlorophyll into safe molecules of phyllobilins, which are stored in the central vacuole of terrestrial plants. The expression of chlorophyll-degrading enzymes is mediated by various transcription factors and influenced by light conditions, stress, and plant hormones. Chlorophyll degradation is differently regulated in different organs and developmental stages of plants. The initiation of chlorophyll degradation induces the further expression of chlorophyll-degrading enzymes, resulting in the acceleration of chlorophyll degradation. Chlorophyll degradation was initially considered the last reaction in senescence; however, chlorophyll degradation plays crucial roles in enhancing senescence, degrading chlorophyll-protein complexes, forming photosystem II, and maintaining seed quality. Therefore, controlling chlorophyll degradation has important agricultural applications.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信