Probiotics and Antimicrobial Proteins最新文献

筛选
英文 中文
Lactobacillus rhamnosus GG Regulates Host IFN-I Through the RIG-I Signalling Pathway to Inhibit Herpes Simplex Virus Type 2 Infection. 鼠李糖乳杆菌 GG 通过 RIG-I 信号途径调节宿主 IFN-I,从而抑制 2 型单纯疱疹病毒感染。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2023-08-25 DOI: 10.1007/s12602-023-10137-8
Jingyu Wang, Mei Huang, Yuqi Du, Haoming Chen, Zixiong Li, Taiyu Zhai, Zihao Ou, Yiyi Huang, Fan Bu, Haojun Zhen, Ruoru Pan, Yubing Wang, Xiaohan Zhao, Bo Situ, Lei Zheng, Xiumei Hu
{"title":"Lactobacillus rhamnosus GG Regulates Host IFN-I Through the RIG-I Signalling Pathway to Inhibit Herpes Simplex Virus Type 2 Infection.","authors":"Jingyu Wang, Mei Huang, Yuqi Du, Haoming Chen, Zixiong Li, Taiyu Zhai, Zihao Ou, Yiyi Huang, Fan Bu, Haojun Zhen, Ruoru Pan, Yubing Wang, Xiaohan Zhao, Bo Situ, Lei Zheng, Xiumei Hu","doi":"10.1007/s12602-023-10137-8","DOIUrl":"10.1007/s12602-023-10137-8","url":null,"abstract":"<p><p>Numerous recent studies have demonstrated that the commensal microbiota plays an important role in host immunity against infections. During the infection process, viruses can exhibit substantial and close interactions with the commensal microbiota. However, the associated mechanism remains largely unknown. Therefore, in this study, we explored the specific mechanisms by which the commensal microbiota modulates host immunity against viral infections. We found that the expression levels of type I interferon (IFN-I) and antiviral priming were significantly downregulated following the depletion of the commensal microbiota due to treatment with broad-spectrum antibiotics (ABX). In addition, we confirmed a unique molecular mechanism underlying the induction of IFN-I mediated by the commensal microbiota. In vivo and in vitro experiments confirmed that Lactobacillus rhamnosus GG (LGG) can suppress herpes simplex virus type 2 (HSV-2) infection by inducing IFN-I expression via the retinoic acid-inducible gene-I (RIG-I) signalling pathway. Therefore, the commensal microbiota-induced production of IFN-I provides a potential therapeutic approach to combat viral infections. Altogether, understanding the complexity and the molecular aspects linking the commensal microbiota to health will help provide the basis for novel therapies already being developed.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1966-1978"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573810/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10068529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Gut to Brain: Unraveling the Intricate Link Between Microbiome and Stroke. 从肠道到大脑:揭开微生物组与中风之间错综复杂的联系。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2024-06-03 DOI: 10.1007/s12602-024-10295-3
Neha Raghani, Humzah Postwala, Yesha Shah, Mehul Chorawala, Priyajeet Parekh
{"title":"From Gut to Brain: Unraveling the Intricate Link Between Microbiome and Stroke.","authors":"Neha Raghani, Humzah Postwala, Yesha Shah, Mehul Chorawala, Priyajeet Parekh","doi":"10.1007/s12602-024-10295-3","DOIUrl":"10.1007/s12602-024-10295-3","url":null,"abstract":"<p><p>Stroke, a neurological disorder, is intricately linked to the gut microbiota, influencing microbial composition and elevating the risk of ischemic stroke. The neuroprotective impact of short-chain fatty acids (SCFAs) derived from dietary fiber fermentation contrasts with the neuroinflammatory effects of lipopolysaccharide (LPS) from gut bacteria. The pivotal role of the gut-brain axis, facilitating bidirectional communication between the gut and the brain, is crucial in maintaining gastrointestinal equilibrium and influencing cognitive functions. An in-depth understanding of the interplay among the gut microbiota, immune system, and neurological outcomes in stroke is imperative for devising innovative preventive and therapeutic approaches. Strategies such as dietary adjustments, probiotics, prebiotics, antibiotics, or fecal transplantation offer promise in modulating stroke outcomes. Nevertheless, comprehensive research is essential to unravel the precise mechanisms governing the gut microbiota's involvement in stroke and to establish effective therapeutic interventions. The initiation of large-scale clinical trials is warranted to assess the safety and efficacy of interventions targeting the gut microbiota in stroke management. Tailored strategies that reinstate eubiosis and foster a healthy gut microbiota hold potential for both stroke prevention and treatment. This review underscores the gut microbiota as a promising therapeutic target in stroke and underscores the need for continued research to delineate its precise role and develop microbiome-based interventions effectively.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2039-2053"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. 探索益生菌和益生元在重度抑郁症中的潜力:从分子功能到临床治疗
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2024-07-30 DOI: 10.1007/s12602-024-10326-z
Xin Yuan, Jianbo Chai, Wenqiang Xu, Yonghou Zhao
{"title":"Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy.","authors":"Xin Yuan, Jianbo Chai, Wenqiang Xu, Yonghou Zhao","doi":"10.1007/s12602-024-10326-z","DOIUrl":"10.1007/s12602-024-10326-z","url":null,"abstract":"<p><p>Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2181-2217"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probiotics for Aquaculture: Hope, Truth, and Reality. 水产养殖中的益生菌:希望、真相与现实。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2024-05-27 DOI: 10.1007/s12602-024-10290-8
Svetoslav Dimitrov Todorov, Joao Marcos Scafuro Lima, Jorge Enrique Vazquez Bucheli, Igor Vitalievich Popov, Santosh Kumar Tiwari, Michael Leonidas Chikindas
{"title":"Probiotics for Aquaculture: Hope, Truth, and Reality.","authors":"Svetoslav Dimitrov Todorov, Joao Marcos Scafuro Lima, Jorge Enrique Vazquez Bucheli, Igor Vitalievich Popov, Santosh Kumar Tiwari, Michael Leonidas Chikindas","doi":"10.1007/s12602-024-10290-8","DOIUrl":"10.1007/s12602-024-10290-8","url":null,"abstract":"<p><p>The use of microorganisms as beneficial crops for human and animal health has been studied for decades, and these microorganisms have been in practical use for quite some time. Nowadays, in addition to well-known examples of beneficial properties of lactic acid bacteria, bifidobacteria, selected Bacillus spp., and yeasts, there are several other bacteria considered next-generation probiotics that have been proposed to improve host health. Aquaculture is a rapidly growing area that provides sustainable proteins for consumption by humans and other animals. Thus, there is a need to develop new technologies for the production practices associated with cleaner and environment-friendly approaches. It is a well-known fact that proper selection of the optimal probiotics for use in aquaculture is an essential step to ensure effectiveness and safety. In this critical review, we discuss the evaluation of host-specific probiotics in aquaculture, challenges in using probiotics in aquaculture, methods to improve the survival of probiotics under different environmental conditions, technological approach to improving storage, and delivery along with possible negative consequences of using probiotics in aquaculture. A critical analysis of the identified challenges for the use of beneficial microbes in aquaculture will help in sustainable aquafarming, leading to improved agricultural practices with a clear aim to increase protein production.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2007-2020"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. 肠道守护者:利用益生菌微生物群及其外多糖的力量减轻重金属对人体的毒性,从而改善健康。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2024-05-11 DOI: 10.1007/s12602-024-10281-9
Pushpak Dahiya, Sangeeta Kumari, Manya Behl, Aakash Kashyap, Deeksha Kumari, Kalpana Thakur, Mamta Devi, Neelam Kumari, Neelam Kaushik, Abhishek Walia, Arvind Kumar Bhatt, Ravi Kant Bhatia
{"title":"Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health.","authors":"Pushpak Dahiya, Sangeeta Kumari, Manya Behl, Aakash Kashyap, Deeksha Kumari, Kalpana Thakur, Mamta Devi, Neelam Kumari, Neelam Kaushik, Abhishek Walia, Arvind Kumar Bhatt, Ravi Kant Bhatia","doi":"10.1007/s12602-024-10281-9","DOIUrl":"10.1007/s12602-024-10281-9","url":null,"abstract":"<p><p>Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1937-1953"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Prophylactic Protection of Salmonella Typhimurium Infection by Lentilactobacillus buchneri GX0328-6 in Mice. 布氏扁豆乳杆菌 GX0328-6 对小鼠感染鼠伤寒沙门氏菌的预防性保护作用
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2023-09-05 DOI: 10.1007/s12602-023-10145-8
Yan Shi, Hao Peng, Yuying Liao, Jun Li, Yangyan Yin, Hongyan Peng, Leping Wang, Yizhou Tan, Changting Li, Huili Bai, Chunxia Ma, Wenbao Tan, Xun Li
{"title":"The Prophylactic Protection of Salmonella Typhimurium Infection by Lentilactobacillus buchneri GX0328-6 in Mice.","authors":"Yan Shi, Hao Peng, Yuying Liao, Jun Li, Yangyan Yin, Hongyan Peng, Leping Wang, Yizhou Tan, Changting Li, Huili Bai, Chunxia Ma, Wenbao Tan, Xun Li","doi":"10.1007/s12602-023-10145-8","DOIUrl":"10.1007/s12602-023-10145-8","url":null,"abstract":"<p><p>Salmonellosis is a disease caused by non-typhoid Salmonella, and although some lactic acid bacteria strains have been shown previously to relieve Salmonellosis symptoms, little has been studied about the preventive mechanism of Lentilactobacillus buchneri (L. buchneri) against Salmonella infection in vivo. Therefore, the L. buchneri was fed to C57BL/6 mice for 10 days to build a protective system of mice to study its prevention and possible mechanisms. The results showed that L. buchneri GX0328-6 alleviated symptoms caused by Salmonella typhimurium infection among C57BL/6 mice, including low survival rate, weight loss, increase in immune organ index and hepatosplenomegaly, and modulated serum immunoglobulin levels and intrinsic immunity. Importantly, the L. buchneri GX0328-6 enhanced the mucosal barrier of the mouse jejunum by upregulating the expression of tight junction proteins such as ZO-1, occludins, and claudins-4 and improved absorptive capacity by increasing the length of mouse jejunal villus and the ratio of villus length to crypt depth and decreasing the crypt depth. L. buchneri GX0328-6 reduced the intestinal proliferation and invasion of Salmonella typhimurium by modulating the expression of antimicrobial peptides in the intestinal tract of mice, and reduced intestinal inflammation and systemic spread in mice by downregulating the expression of IL-6 and promoting the expression of IL-10. Furthermore, L. buchneri GX0328-6 increased the relative abundance of beneficial bacteria colonies and decreased the relative abundance of harmful bacteria in the cecum microflora by modulating the microflora in the cecum contents.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2054-2072"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10152556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. 植物乳杆菌的免疫调节作用及其在疫苗开发中的应用
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2024-08-05 DOI: 10.1007/s12602-024-10338-9
Guiting He, Huanbing Long, Jiarong He, Cuiming Zhu
{"title":"The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development.","authors":"Guiting He, Huanbing Long, Jiarong He, Cuiming Zhu","doi":"10.1007/s12602-024-10338-9","DOIUrl":"10.1007/s12602-024-10338-9","url":null,"abstract":"<p><p>Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2229-2250"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Probiotics in Skin Care: Advances, Challenges, and Future Needs. 益生菌在皮肤护理中的作用:进展、挑战和未来需求。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2024-07-05 DOI: 10.1007/s12602-024-10319-y
Faezeh Shirkhan, Fatemeh Safaei, Saeed Mirdamadi, Mohammad Zandi
{"title":"The Role of Probiotics in Skin Care: Advances, Challenges, and Future Needs.","authors":"Faezeh Shirkhan, Fatemeh Safaei, Saeed Mirdamadi, Mohammad Zandi","doi":"10.1007/s12602-024-10319-y","DOIUrl":"10.1007/s12602-024-10319-y","url":null,"abstract":"<p><p>The skin, being the largest organ in the human body, plays a pivotal role in safeguarding the body against invasive pathogens. Therefore, it is essential to reinforce and protect this vital organ. Current research supports the impact of probiotics on skin health and their ability to alleviate various skin disorders. However, the effectiveness and probable side effects of probiotics in skin care remain a subject of debate, necessitating further investigation and analysis. Hence, this study aims to highlight existing gaps and future needs in the current research on probiotics in skin care and pave the way for future investigations. Therefore, we scrutinized the effects of oral (fermented foods and dietary supplements) and non-oral/topical probiotics on skin care, and the mechanism of probiotics that affect skin health. The results of most studies showed that fermented foods containing probiotics, particularly dairy products, positively impact skin health. The research results regarding the efficacy of probiotic supplements and live strains in treating skin disorders show promising potential. However, safety evaluations are crucial, to identify any potential adverse effects. While research has identified numerous potential mechanisms by which probiotics may influence skin health, a complete understanding of their precise mode of action remains elusive. However, it seems that probiotics can exert their positive effects through the gut-skin and gut-skin-brain axis on the human body. Therefore, following the identification of safe probiotics, additional studies should be carried out to establish optimal dosages, potential side effects, suitable regulatory guidelines, and validation methods.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2132-2149"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-Diabetic Effect of Lactobacillus Paracasei Isolated from Malaysian Water Kefir Grains. 马来西亚水开菲尔谷物中副干酪乳杆菌的抗糖尿病作用。
IF 5.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2023-09-27 DOI: 10.1007/s12602-023-10159-2
Noorshafadzilah Talib, Nurul Elyani Mohamad, Swee Keong Yeap, Chai Ling Ho, Mas Jaffri Masarudin, Suraini Abd-Aziz, Mira Nadiah Mohd Izham, Muganti Rajah Kumar, Yazmin Hussin, Noorjahan Banu Alitheen
{"title":"Anti-Diabetic Effect of Lactobacillus Paracasei Isolated from Malaysian Water Kefir Grains.","authors":"Noorshafadzilah Talib, Nurul Elyani Mohamad, Swee Keong Yeap, Chai Ling Ho, Mas Jaffri Masarudin, Suraini Abd-Aziz, Mira Nadiah Mohd Izham, Muganti Rajah Kumar, Yazmin Hussin, Noorjahan Banu Alitheen","doi":"10.1007/s12602-023-10159-2","DOIUrl":"10.1007/s12602-023-10159-2","url":null,"abstract":"<p><p>The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14 weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50 ± 437.02 mmol/L·min and 2017.50 ± 347.09 mmol/L·min, respectively, compared to untreated diabetic mice which was 3884.50 ± 39.36 mmol/L·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2161-2180"},"PeriodicalIF":5.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41164076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Protein Secretomes of Enterococcus durans on ex vivo Human Gut Microbiome. 杜兰肠球菌蛋白质分泌组对体外人体肠道微生物组的影响
IF 5.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2023-08-17 DOI: 10.1007/s12602-023-10136-9
Carolina Baldisserotto Comerlato, Xu Zhang, Krystal Walker, Janice Mayne, Daniel Figeys, Adriano Brandelli
{"title":"The Influence of Protein Secretomes of Enterococcus durans on ex vivo Human Gut Microbiome.","authors":"Carolina Baldisserotto Comerlato, Xu Zhang, Krystal Walker, Janice Mayne, Daniel Figeys, Adriano Brandelli","doi":"10.1007/s12602-023-10136-9","DOIUrl":"10.1007/s12602-023-10136-9","url":null,"abstract":"<p><p>The gut microbiome plays a critical role to all animals and humans health. Methods based on ex vivo cultures are time and cost-effective solutions for rapid evaluation of probiotic effects on microbiomes. In this study, we assessed whether the protein secretome from the potential probiotic Enterococcus durans LAB18S grown on fructoligosaccharides (FOS) and galactoligosaccharides (GOS) had specific effects on ex vivo cultured intestinal microbiome obtained from a healthy individual. Metaproteomics was used to evaluate changes in microbial communities of the human intestinal microbiome. Hierarchical clustering analysis revealed 654 differentially abundant proteins from the metaproteome samples, showing that gut microbial protein expression varied on the presence of different E. durans secretomes. Increased amount of Bacteroidetes phylum was observed in treatments with secretomes from E. durans cultures on FOS, GOS and albumin, resulting in a decrease of the Firmicutes to Bacteroidetes (F/B) ratio. The most functionally abundant bacterial taxa were Roseburia, Bacteroides, Alistipes and Faecalibacterium. The results suggest that the secretome of E. durans may have favorable effects on the intestinal microbial composition, stimulating growth and different protein expression of beneficial bacteria. These findings suggest that proteins secreted by E. durans growing on FOS and GOS have different effects on the modulation of gut microbiota functional activities during cultivation.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1954-1965"},"PeriodicalIF":5.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10015129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信