{"title":"Reinforcement of Epoxidized Natural Rubber with High Antimicrobial Resistance Using Water Hyacinth Fibers and Chlorhexidine Gluconate.","authors":"Thidarat Kanthiya, Pornchai Rachtanapun, Siwarote Boonrasri, Thorsak Kittikorn, Thanongsak Chaiyaso, Patnarin Worajittiphon, Nuttapol Tanadchangsaeng, Sarinthip Thanakkasaranee, Noppol Leksawasdi, Yuthana Phimolsiripol, Warintorn Ruksiriwanich, Kittisak Jantanasakulwong","doi":"10.3390/polym16213089","DOIUrl":"10.3390/polym16213089","url":null,"abstract":"<p><p>In this study, epoxidized natural rubber (ENR) was mixed using a two-roller mixer. Water hyacinth fiber (WHF) acted as a reinforcing agent in the preparation of the rubber composite at 10 phr (ENRC/WHF). Chlorhexidine gluconate (CHG) was added at different concentrations (1, 5, 10, and 20 phr) as an antimicrobial and coupling agent. The tensile strength increased with a CHG content of 1 phr (4.59 MPa). The ENRC/WHF/CHG20 blend offered high hardness (38) and good morphology owing to the reduction in cavities and fiber pull-out from the rubber matrix. The swelling of the sample blends in oil and toluene decreased as the CHG content increased. Reactions of -NH<sub>2</sub>/epoxy groups and -NH<sub>2</sub>/-OH groups occurred during the preparation of the ENRC/WHF/CHG blend. The FTIR spectroscopy peak at 1730 cm<sup>-1</sup> confirmed the reaction between the -NH<sub>2</sub> groups of CHG and epoxy groups of ENR. The ENRC/WHF/CHG blend at 10 phr and 20 phr exhibited zones of inhibition against three bacterial species (<i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, and <i>Bacillus cereus</i>). CHG simultaneously acted as a crosslinking agent between ENR and WHF and as an antimicrobial additive for the blends. CHG also improved the tensile strength, hardness, swelling, and antimicrobial properties of ENR composites.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PolymersPub Date : 2024-10-31DOI: 10.3390/polym16213074
Arkadiusz Charuk, Izabela Irska, Paweł Dunaj
{"title":"Modeling the Dynamic Properties of Multi-Layer Glass Fabric Sandwich Panels.","authors":"Arkadiusz Charuk, Izabela Irska, Paweł Dunaj","doi":"10.3390/polym16213074","DOIUrl":"10.3390/polym16213074","url":null,"abstract":"<p><p>Sandwich panels are key components of many lightweight structures. They are often subjected to time-varying loads, which can cause various types of vibrations that adversely affect the functionality of the structure. That is why it is of such importance to predict the dynamic properties of both the panels and the structures made of them at the design stage. This paper presents finite element modeling of the dynamic properties (i.e., natural frequencies, mode shapes, and frequency response functions) of sandwich panels made of glass fabric impregnated with phenolic resin. The model reproducing the details of the panel structure was built using two-dimensional, quadrilateral, isoparametric plane elements. Afterwards, the model was subjected to an updating procedure based on experimentally determined frequency response functions. As a result, the average relative error for natural frequencies achieved numerically was 5.0%. Finally, a cabinet model consisting of the analyzed panels was built and experimentally verified. The relative error between the numerically and experimentally obtained natural frequencies was on average 5.9%.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548523/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PolymersPub Date : 2024-10-31DOI: 10.3390/polym16213076
Danvanichkul Assadakorn, Gongxu Liu, Kuanfa Hao, Lichen Bai, Fumin Liu, Yuan Xu, Lei Guo, Haichao Liu
{"title":"Effects of BET Surface Area and Silica Hydrophobicity on Natural Rubber Latex Foam Using the Dunlop Process.","authors":"Danvanichkul Assadakorn, Gongxu Liu, Kuanfa Hao, Lichen Bai, Fumin Liu, Yuan Xu, Lei Guo, Haichao Liu","doi":"10.3390/polym16213076","DOIUrl":"10.3390/polym16213076","url":null,"abstract":"<p><p>To reinforce natural rubber latex foam, fumed silica and precipitated silica are introduced into latex foam prepared using the Dunlop process as fillers. Four types of silica, including Aerosil 200 (hydrophilic fumed silica), Reolosil DM30, Aerosil R972 (hydrophobic fumed silica), and Sipernat 22S (precipitated silica), are investigated. The latex foam with added silica presents better mechanical and physical properties compared with the non-silica foam. The hydrophobic nature of the fumed silica has better dispersion in natural rubber compared to hydrophilic silica. The specific surface area of silica particles (BET) also significantly influences the properties of the latex foam, with larger specific surface areas resulting in better dispersity in the rubber matrix. It was observed that exceeding 2 phr led to difficulties in the foaming process (bulking). Furthermore, higher loading of silica also affected the rubber foam, resulting in an increased shrinkage percentage, hardness, compression set, and crosslink density. The crosslink density increased from 11.0 ± 0.2 mol/cm<sup>3</sup> for non-silica rubber to 11.6 ± 0.6 mol/cm<sup>3</sup> for Reolosil DM30. Reolosil DM30 also had the highest hardness, with a hardness value of 52.0 ± 2.1 IRHD, compared to 45.0 ± 1.3 IRHD for non-silica foam rubber and 48 ± 2.4 IRHD for hydrophilic fumed silica Aerosil 200. Hydrophobic fumed silica also had the highest ability to return to its original shape, with a recovery percentage of 88.0% ± 3.5% compared to the other fumed silica. Overall, hydrophobic fumed silica had better results than hydrophilic silica in both fumed and precipitated silica.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PolymersPub Date : 2024-10-31DOI: 10.3390/polym16213072
Karolina Kulka-Kamińska, Alina Sionkowska
{"title":"The Properties of Thin Films Based on Chitosan/Konjac Glucomannan Blends.","authors":"Karolina Kulka-Kamińska, Alina Sionkowska","doi":"10.3390/polym16213072","DOIUrl":"10.3390/polym16213072","url":null,"abstract":"<p><p>In this work, blend films were prepared by blending 2% chitosan (CS) and 0.5% konjac glucomannan (KGM) solutions. Five ratios of the blend mixture were implemented (95:5, 80:20, 50:50, 20:80, and 5:95), and a pure CS film and a pure KGM film were also obtained. All the polymeric films were evaluated using FTIR spectroscopy, mechanical testing, SEM and AFM imaging, thermogravimetric analyses, swelling and degradation analyses, and contact angle measurements. The CS/KGM blends were assessed for their miscibility. Additionally, the blend films' properties were evaluated after six months of storage. The proposed blends had good miscibility in a full range of composition proportions. The blend samples, compared to the pure CS film, indicated better structural integrity. The surface structure of the blend films was rather uniform and smooth. The sample CS/KGM 20:80 had the highest roughness value (Rq = 12.60 nm). The KGM addition increased the thermal stability of films. The blend sample CS/KGM 5:95 exhibited the greatest swelling ability, reaching a swelling degree of 946% in the first fifteen minutes of the analysis. Furthermore, the addition of KGM to CS improved the wettability of the film samples. As a result of their good mechanical properties, surface characteristics, and miscibility, the proposed CS/KGM blends are promising materials for topical biomedical and cosmetic applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PolymersPub Date : 2024-10-31DOI: 10.3390/polym16213068
Sheng-Jen Lin, Juin-Yih Su, Dave W Chen, Gwomei Wu
{"title":"Development of Polymer Composite Membrane Electrolytes in Alkaline Zn/MnO<sub>2</sub>, Al/MnO<sub>2</sub>, Zinc/Air, and Al/Air Electrochemical Cells.","authors":"Sheng-Jen Lin, Juin-Yih Su, Dave W Chen, Gwomei Wu","doi":"10.3390/polym16213068","DOIUrl":"10.3390/polym16213068","url":null,"abstract":"<p><p>This paper reports on the novel composite membrane electrolytes used in Zn/MnO<sub>2</sub>, Al/MnO<sub>2</sub>, Al/air, and zinc/air electrochemical devices. The composite membranes were made using poly(vinyl alcohol), poly(acrylic acid), and a sulfonated polypropylene/polyethylene separator to enhance the electrochemical characteristics and dimensional stability of the solid electrolyte membranes. The ionic conductivity was improved significantly by the amount of acrylic acid incorporated into the polymer systems. In general, the ionic conductivity was also enhanced gradually as the testing temperature increased from 20 to 80 °C. Porous zinc gel electrodes and pure aluminum plates were used as the anodes, while porous carbon air electrodes or porous MnO<sub>2</sub> electrodes were used as the cathodes. The cyclic voltammetry properties and electrochemical impedance characteristics were investigated to evaluate the cell behavior and electrochemical properties of these prototype cells. The results showed that these prototype cells had a low bulk resistance, a high cell power density, and a unique device stability. The Al/MnO<sub>2</sub> cell achieved a density of 110 mW cm<sup>-2</sup> at the designated current density for the discharge tests, while the other cells also exhibited good values in the range of 70-100 mW cm<sup>-2</sup>. Furthermore, the Zn/air cell consisting of the PVA/PAA = 10:5 composite membrane revealed an excellent discharge capacity of 1507 mAh. This represented a very high anode utilization of 95.7% at the C/10 rate.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PolymersPub Date : 2024-10-31DOI: 10.3390/polym16213069
Cătălina Diana Uşurelu, Denis Mihaela Panaitescu, Gabriela Mădălina Oprică, Cristian-Andi Nicolae, Augusta Raluca Gabor, Celina Maria Damian, Raluca Ianchiş, Mircea Teodorescu, Adriana Nicoleta Frone
{"title":"Effect of Medium-Chain-Length Alkyl Silane Modified Nanocellulose in Poly(3-hydroxybutyrate) Nanocomposites.","authors":"Cătălina Diana Uşurelu, Denis Mihaela Panaitescu, Gabriela Mădălina Oprică, Cristian-Andi Nicolae, Augusta Raluca Gabor, Celina Maria Damian, Raluca Ianchiş, Mircea Teodorescu, Adriana Nicoleta Frone","doi":"10.3390/polym16213069","DOIUrl":"10.3390/polym16213069","url":null,"abstract":"<p><p>Poly (3-hydroxybutyrate) (PHB) is a valuable biopolymer that is produced in industrial quantity but is not widely used in applications due to some drawbacks. The addition of cellulose nanofibers (CNF) as a biofiller in PHB/CNF nanocomposites may improve PHB properties and enlarge its application field. In this work, n-octyltriethoxy silane (OTES), a medium-chain-length alkyl silane, was used to surface chemically modify the CNF (CNF_OTES) to enhance their hydrophobicity and improve their compatibility with PHB. The surface functionalization of CNF and nanodimension were emphasized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, atomic force microscopy, dynamic light scattering, and water contact angle (CA). Surface modification of CNF with OTES led to an increase in thermal stability by 25 °C and more than the doubling of CA. As a result of the higher surface hydrophobicity, the CNF_OTES were more homogeneously dispersed in PHB than unmodified CNF, leading to a PHB nanocomposite with better thermal and mechanical properties. Thus, an increase by 122% of the storage modulus at 25 °C, a slight increase in crystallinity, a better melting processability, and good thermal stability were obtained after reinforcing PHB with CNF_OTES, paving the way for increasing PHB applicability.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PolymersPub Date : 2024-10-31DOI: 10.3390/polym16213090
Klara Kostajnšek, Matejka Bizjak, Gözde Ertekin, Mustafa Ertekin
{"title":"Evaluation of the UV Protection Properties of Para-Aramid Woven Fabrics with Various Specialty Core Yarns.","authors":"Klara Kostajnšek, Matejka Bizjak, Gözde Ertekin, Mustafa Ertekin","doi":"10.3390/polym16213090","DOIUrl":"10.3390/polym16213090","url":null,"abstract":"<p><p>Para-aramid fibers, known for their remarkable strength and thermal stability, are frequently employed in protective textiles for military and aerospace applications. However, continuous exposure to ultraviolet (UV) radiation can damage their protective characteristics. This study analyzes the ultraviolet protection factor (UPF) and UV transmittance of woven fabrics produced from 30/2 Ne spun para-aramid yarns in the warp and 10 Ne core-spun yarns in the weft. The weft yarns consisted of three sheath fibers-para-aramid, meta-aramid, and polyester-in combination with different specialty core materials. The results show significant differences in UPF before and after UV exposure, with para-aramid sheaths giving the highest improvement. UV exposure caused structural changes in the fibers, resulting in increased UV protection, particularly in fabrics with para-aramid sheaths. This study concludes that the combination of para-aramid fibers with specific core materials significantly enhances UV protection, making them well-suited for applications in high UV exposure environments.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prevention and Control of Biofouling Coatings in <i>Limnoperna fortunei</i>: A Review of Research Progress and Strategies.","authors":"Hailong Zhang, Qingjie Ding, Yonghui Zhang, Guangyi Lu, Yangyu Liu, Yuping Tong","doi":"10.3390/polym16213070","DOIUrl":"10.3390/polym16213070","url":null,"abstract":"<p><p>The increasing environmental concerns of conventional antifouling coatings have led to the exploration of novel and sustainable solutions to address the biofouling caused by <i>Limnoperna fortunei</i>. As a rapidly expanding invasive species, the fouling process of <i>Limnoperna fortunei</i> is closely associated with microbial fouling, posing significant threats to the integrity of aquatic infrastructure and biodiversity. This review discusses recent progress in the development of non-toxic, eco-friendly antifouling coatings that are designed to effectively resist biofouling without using toxic chemicals. Recent research has focused on developing novel non-toxic coatings that integrate natural bioactive components with advanced material technologies. These formulations not only meet current environmental standards and exhibit minimal ecological impact, but also possess significant potential in preventing the attachment, growth, and reproduction of <i>Limnoperna fortunei</i>. This review aims to provide scientific guidance by proposing effective and sustainable solutions to address the ecological challenges presented by <i>Limnoperna fortunei</i>. The insights gained from current research not only reveal novel antifouling methods, but also identify key areas for further investigation aimed at enhancing performance and environmental compatibility.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PolymersPub Date : 2024-10-31DOI: 10.3390/polym16213092
Vito Gigante, Francesca Cartoni, Bianca Dal Pont, Laura Aliotta
{"title":"Extrusion Parameters Optimization and Mechanical Properties of Bio-Polyamide 11-Based Biocomposites Reinforced with Short Basalt Fibers.","authors":"Vito Gigante, Francesca Cartoni, Bianca Dal Pont, Laura Aliotta","doi":"10.3390/polym16213092","DOIUrl":"10.3390/polym16213092","url":null,"abstract":"<p><p>The increasing demand for sustainable materials in high-value applications, particularly in the automotive industry, has prompted the development of biocomposites based on renewable or recyclable matrices and natural fibers as reinforcements. In this context, this paper aimed to produce composites with improved mechanical and thermal properties (tensile, flexural, and heat deflection temperature) through an optimized process pathway using a biobased polyamide reinforced with short basalt fibers. This study emphasizes the critical impact of fiber length, matrix adhesion, and the variation in matrix properties with increasing fiber content. These factors influence the properties of short-fiber composites produced via primary processing using extrusion and shaped through injection molding. The aim of this work was to optimize extrusion conditions using a 1D simulation software to minimize excessive fiber fragmentation during the extrusion process. The predictive model's capacity to forecast fiber degradation and the extent of additional fiber breakage during extrusion was evaluated. Furthermore, the impact of injection molding on these conditions was investigated. Moreover, a comprehensive thermomechanical characterization of the composites, comprising 10%, 20%, and 30% fiber content, was carried out, focusing on the correlation with morphology and processing using SEM and micro-CT analyses. In particular, how the extrusion process parameters adopted can influence fiber breakage and how injection molding can influence the fiber orientation were investigated, highlighting their influence in determining the final mechanical properties of short fiber composites. By optimizing the process parameters, an increment with respect to bio-PA11 in the tensile strength of 38%, stiffness of 140%, and HDT of 77% compared to the matrix were obtained.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548792/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PolymersPub Date : 2024-10-31DOI: 10.3390/polym16213085
Xinke Zhang, Zhikun Liu, Bing Yuan, Kai Yang
{"title":"Surface Wetting Behaviors of Hydroxyl-Terminated Polybutadiene: Molecular Mechanism and Modulation.","authors":"Xinke Zhang, Zhikun Liu, Bing Yuan, Kai Yang","doi":"10.3390/polym16213085","DOIUrl":"10.3390/polym16213085","url":null,"abstract":"<p><p>The surface wetting or coating of materials by polymers is crucial for designing functional interfaces and various industrial applications. However, the underlying mechanisms remain elusive. In this study, the wetting behavior of hydroxyl-terminated polybutadiene (HTPB) on a quartz surface was systematically investigated using computer simulation methods. A notable tip-dominant surface adsorption mode of HTPB was identified, where the hydroxyl group at the end of the polymer chain binds to the surface to initiate the wetting process. Moreover, it was found that with the increase in the degree of polymerization (e.g., from DP = 10 to 30), spontaneous adsorption of HTPB becomes increasingly difficult, with a three-fold increase in the adsorption time. These results suggest a competition mechanism between enthalpy (e.g., adhesion between the polymer and the surface) and entropy (e.g., conformational changes in polymer chains) that underlies the wetting behavior of HTPB. Based on this mechanism, two strategies were employed: altering the degree of polymerization of HTPB and/or regulating the amount of interfacial water molecules (e.g., above or below the threshold amount of 350 on a 10 × 10 nm<sup>2</sup> surface). These strategies effectively modulate HTPB's surface wetting process. This study provides valuable insights into the mechanisms underlying the surface adsorption behavior of HTPB and offers guidance for manipulating polymer wetting processes at interfaces.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}