{"title":"Identification of a novel Golgi-localized putative glycosyltransferase protein in <i>Arabidopsis thaliana</i>.","authors":"Natalia Rzepecka, Yoko Ito, Kei Yura, Emi Ito, Tomohiro Uemura","doi":"10.5511/plantbiotechnology.23.1214a","DOIUrl":"10.5511/plantbiotechnology.23.1214a","url":null,"abstract":"<p><p>SNAREs play an important role in the process of membrane trafficking. In the present research, we investigated subcellular localization of an uncharacterized <i>Arabidopsis thaliana</i> protein reported to interact with a <i>trans</i>-Golgi network-localized Qa-SNARE, SYNTAXIN OF PLANTS 43. Based on the similarity of its amino acid sequence to metazoan fucosyltransferases, we have named this novel protein AtGTLP (<i>Arabidopsis thaliana</i> <b>G</b>lycosyl<b>T</b>ransferase-<b>L</b>ike <b>P</b>rotein) and predicted that it should be a member of yet uncharacterized family of Arabidopsis fucosyltransferases, as it shows no significant sequence similarity to fucosyltransferases previously identified in Arabidopsis. AtGTLP is a membrane-anchored protein, which exhibits a type II-like topology, with a single transmembrane helix and a globular domain in the C-terminal part of its amino acid sequence. Colocalization data we collected suggest that AtGTLP should localize mainly to Golgi apparatus, especially to certain zones of <i>trans</i>-Golgi. As single <i>atgtlp-/-</i> mutants showed no obvious difference in phenotype (primary root length and fresh mass), AtGTLP and proteins related to AtGTLP with high similarity in amino acid sequences may have redundant functions.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 1","pages":"35-44"},"PeriodicalIF":1.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiotechnologyPub Date : 2024-03-25DOI: 10.5511/plantbiotechnology.23.1211a
Takeshi Hirakawa, Seia Tanno, Kazuaki Ohara
{"title":"Exogenous treatment with N-acetylglutamic acid confers tolerance to heat stress in plants.","authors":"Takeshi Hirakawa, Seia Tanno, Kazuaki Ohara","doi":"10.5511/plantbiotechnology.23.1211a","DOIUrl":"10.5511/plantbiotechnology.23.1211a","url":null,"abstract":"<p><p>Heat stress, which occurs when temperatures exceed the optimal range for growth, challenges the maintenance of crop yield because it disrupts plant homeostasis at the cellular and developmental levels. Chemical priming, which can activate the response to environmental stress using chemical compounds, is a promising method of maintaining plant growth under stressful conditions. Recently, we found that the non-proteogenic amino acid N-acetylglutamic acid (NAG) confers tolerance to oxidative stress through the activation of genes related to scavenging reactive oxygen species in plants. However, it has been unknown whether NAG alleviates environmental stress except oxidative stress. Here, we revealed that the response to heat stress was enhanced by exogenous treatment with NAG in plants. NAG alleviated the reduction in chlorophyll content induced by heat stress in <i>Arabidopsis thaliana</i>. Gene expression analysis showed that NAG activates the transcription factor <i>HSFA2</i>, which is regarded as a master regulator of the transcriptional cascade in response to heat stress. NAG induces histone H4 acetylation, an active histone modification, at the <i>HSFA2</i> locus, suggesting that NAG could activate the expression of <i>HSFA2</i> based on epigenetic modifications such as histone acetylation. Additionally, we found that <i>Oryza sativa</i> treated with NAG showed tolerance to heat stress. These results suggest that NAG could be used for chemical priming in the maintenance of plant growth under heat-stress conditions.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 1","pages":"71-76"},"PeriodicalIF":1.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic diversity analysis and genome wide assessment of oxalate accumulation in the leaves of rice (<i>Oryza sativa</i>) cultivars.","authors":"Atsuko Miyagi, Nobuhiro Tanaka, Matthew Shenton, Kaworu Ebana, Satoshi Ohkubo, Shunsuke Adachi, Taiichiro Ookawa, Maki Kawai-Yamada","doi":"10.5511/plantbiotechnology.23.1025a","DOIUrl":"10.5511/plantbiotechnology.23.1025a","url":null,"abstract":"<p><p>Soluble oxalate accumulates in rice leaves, and it causes mineral deficiency and urinary syndrome in livestock that consume the leaves. In our previous study, we found that the oxalate content was higher in the leaves of Koshihikari (<i>japonica</i> type cultivar) than in those of Takanari (<i>indica</i> type cultivar). This difference was seen even when the two cultivars were grown under a high CO<sub>2</sub> concentration, which inhibits oxalate synthesis via photorespiration, suggesting that the difference resulted from genetic factors rather than environmental factors. To clarify whether genetic factors affect the oxalate content of rice leaves, we measured the contents of oxalate and oxalate-related organic acids in the leaves of various rice cultivars the Rice Core Collection (WRC) and Japan Rice Core Collection (JRC) by capillary electrophoresis-mass spectrometry. Results showed that <i>japonica</i> type cultivars tended to accumulate more oxalate than <i>aus</i> or <i>indica</i> type cultivars. Correlation analysis revealed a positive correlation between oxalate accumulation and the citrate content, suggesting that the isocitrate pathway is involved in oxalate accumulation. On the other hand, a genome-wide association study for the oxalate content of the WRC and JRC cultivars did not reveal significant loci directly related to oxalate accumulation. This indicates that the combination of various loci may affect the oxalate contents of rice leaves.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 1","pages":"1-7"},"PeriodicalIF":1.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a molecular maker for sex identification in Thai commercial date palm (<i>Phoenix dactylifera</i> L.).","authors":"Nuttapol Promkaew, Puangpaka Umpunjun, Ngarmnij Chuenboonngarm, Unchera Viboonjun","doi":"10.5511/plantbiotechnology.23.1214b","DOIUrl":"10.5511/plantbiotechnology.23.1214b","url":null,"abstract":"<p><p>Date palm (<i>Phoenix dactylifera</i> L.) is a dioecious plant, with male and female plants having distinct characteristics. Female plants are responsible for fruit production, and only approximately 10% of male plants are necessary for effective pollination. The determination of plant sex occurs during the first flowering, a process that typically spans 3-7 years. However, this extended timeframe results in significant time and valuable plantation resources being expended in the maintenance of trees. To address this issue, the study focused on sex identification of date palms using DNA markers. The research aimed to develop sex-specific markers for certain date palm cultivars, employing the high annealing temperature random amplified polymorphic DNA (HAT-RAPD) technique for accurate and reliable sex identification. In this investigation, 45 RAPD primers underwent screening in both male and female date palm plants to pinpoint sex-specific markers. Out of the total primers tested, only one, OPW-18, exhibited a correlation with sex. OPW-18 produced a distinct band of approximately 400 bp, consistently present in all male plants but absent in all female plants. The male-specific fragment from OPW-18 was cloned and sequenced to facilitate the development of sex-specific sequence-characterized amplified region (SCAR) primers. The outcomes revealed that the newly crafted SCAR primer pair, mspW18-2F and mspW18-2R, successfully amplified a unique fragment of 283 bp exclusively in male plants. This capability allowed the identification of 100% of male plants in the KL1 and Barhi cultivars. These markers prove to be efficient, reliable, and reproducible for early-stage sex identification in plants.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 1","pages":"45-51"},"PeriodicalIF":1.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiotechnologyPub Date : 2024-03-25DOI: 10.5511/plantbiotechnology.23.1120a
Mashiro Yuhazu, Ryoko Hara, Mei Kimura, Akira Kanazawa
{"title":"Functional redundancy of R2R3-MYB transcription factors involved in anthocyanin biosynthesis is manifested in anther pigmentation in petunia.","authors":"Mashiro Yuhazu, Ryoko Hara, Mei Kimura, Akira Kanazawa","doi":"10.5511/plantbiotechnology.23.1120a","DOIUrl":"10.5511/plantbiotechnology.23.1120a","url":null,"abstract":"<p><p>Accumulation of anthocyanin provides pigmentation in plant tissues. In petunia, gene expression profiles that lead to anthocyanin production have been extensively characterized in terms of pigmentation in flower petals. Anthers are also pigmented, but the transcriptional control of the genes for anthocyanin biosynthesis in anthers has not been fully characterized. Here we addressed this issue by analyzing the expression of structural genes and genes encoding transcription factors (TFs) of the pathway. Ectopic expression of the <i>PURPLE HAZE</i> (<i>PHZ</i>) gene encoding an R2R3-MYB activator induced pigmentation in anthers. The pigmentation was accompanied by an increase in mRNA levels of <i>AN1</i>, <i>MYB27</i> and <i>MYBx</i> among the genes encoding TFs. Among the structural genes, mRNA levels of four late biosynthetic genes (LBGs) were higher in the transformants than in the wild type. Analyses of gene expression profile using commercial varieties indicated that mRNA levels of <i>MYB27</i>, <i>MYBx</i> and LBGs and of <i>AN4</i>, responsible for anther pigmentation, were higher in pigmented anthers than in nonpigmented. Differences in the gene expression profile between pigmented anthers induced by ectopic <i>PHZ</i> expression and their nonpigmented control and those between pigmented anthers and nonpigmented anthers of existing varieties were thus remarkably similar. These observations suggest that a high level of expression of the LBGs is characteristic of pigmented anthers and that ectopic <i>PHZ</i> expression in the <i>an4</i> <sup>-</sup> genetic background induced changes in the transcriptional network toward the state established in pigmented anthers, which is intrinsically brought about by the function of <i>AN4</i>.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 1","pages":"9-18"},"PeriodicalIF":1.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiotechnologyPub Date : 2023-12-25DOI: 10.5511/plantbiotechnology.23.0809a
Ryszard Zamorski, Kei'ichi Baba, Takahiro Noda, Rimpei Sawada, Kana Miyata, Takao Itoh, Hanae Kaku, Naoto Shibuya
{"title":"Variety-dependent accumulation of glucomannan in the starchy endosperm and aleurone cell walls of rice grains and its possible genetic basis.","authors":"Ryszard Zamorski, Kei'ichi Baba, Takahiro Noda, Rimpei Sawada, Kana Miyata, Takao Itoh, Hanae Kaku, Naoto Shibuya","doi":"10.5511/plantbiotechnology.23.0809a","DOIUrl":"10.5511/plantbiotechnology.23.0809a","url":null,"abstract":"<p><p>Plant cell wall plays important roles in the regulation of plant growth/development and affects the quality of plant-derived food and industrial materials. On the other hand, genetic variability of cell wall structure within a plant species has not been well understood. Here we show that the endosperm cell walls, including both starchy endosperm and aleurone layer, of rice grains with various genetic backgrounds are clearly classified into two groups depending on the presence/absence of β-1,4-linked glucomannan. All-or-none distribution of the glucomannan accumulation among rice varieties is very different from the varietal differences of arabinoxylan content in wheat and barley, which showed continuous distributions. Immunoelectron microscopic observation suggested that the glucomannan was synthesized in the early stage of endosperm development, but the synthesis was down-regulated during the secondary thickening process associated with the differentiation of aleurone layer. Significant amount of glucomannan in the cell walls of the glucomannan-positive varieties, i.e., 10% or more of the starchy endosperm cell walls, and its close association with the cellulose microfibril suggested possible effects on the physicochemical/biochemical properties of these cell walls. Comparative genomic analysis indicated the presence of striking differences between <i>OsCslA12</i> genes of glucomannan-positive and negative rice varieties, Kitaake and Nipponbare, which seems to explain the all-or-none glucomannan cell wall trait in the rice varieties. Identification of the gene responsible for the glucomannan accumulation could lead the way to clarify the effect of the accumulation of glucomannan on the agronomic traits of rice by using genetic approaches.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"40 4","pages":"321-336"},"PeriodicalIF":1.6,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ADP-glucose pyrophosphorylase genes are differentially regulated in sugar-dependent or -independent manners in tomato (<i>Solanum lycopersicum</i> L.) fruit.","authors":"Yong-Gen Yin, Atsuko Sanuki, Yukihisa Goto, Nobuo Suzui, Naoki Kawachi, Chiaki Matsukura","doi":"10.5511/plantbiotechnology.23.1004a","DOIUrl":"10.5511/plantbiotechnology.23.1004a","url":null,"abstract":"<p><p>In early developing tomato (<i>Solanum lycopersicum</i> L.) fruit, starch accumulates at high levels and is used by various primary metabolites in ripening fruits. ADP-glucose pyrophosphorylase is responsible for the first key step of starch biosynthesis. Although it has been reported that <i>AgpL1</i> and <i>AgpS1</i> isoforms are mainly expressed in early developing fruit, their regulatory mechanism has not been elucidated. The present study investigated the transcriptional response of <i>AgpL1</i> and <i>AgpS1</i> to various metabolizable sugars, nonmetabolizable sugar analogues, hexokinase inhibitors and proline by an experimental system using half-cut fruits. <i>AgpL1</i> was upregulated in response to sucrose and constituted hexoses such glucose, whereas the <i>AgpS1</i> gene almost did not exhibit a prominent sugar response. Further analyses revealed that other disaccharides such maltose and trehalose did not show a remarkable effect on both <i>AgpL1</i> and <i>AgpS1</i> expressions. These results indicate that there are two distinct regulatory mechanisms, namely, sugar metabolism-dependent and -independent, for the regulation of AGPase gene expression. Interestingly, the ADP treatment, a hexokinase inhibitors, cancelled the sugar response of <i>AgpL1</i>, indicating that hexokinase-mediated sugar signaling should be involved in the sugar response of <i>AgpL1.</i> These results suggest that sugar-dependent (<i>AgpL1</i>) and sugar-independent (<i>AgpS1</i>) pathways coordinatively regulate starch biosynthesis in immature tomato fruit.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"40 4","pages":"345-351"},"PeriodicalIF":1.6,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiotechnologyPub Date : 2023-12-25DOI: 10.5511/plantbiotechnology.23.0721a
Yuichi Tada, Ryuto Kochiya, Masayuki Toyoizumi, Yuka Takano
{"title":"Salt tolerance and regulation of Na<sup>+</sup>, K<sup>+</sup>, and proline contents in different wild turfgrasses under salt stress.","authors":"Yuichi Tada, Ryuto Kochiya, Masayuki Toyoizumi, Yuka Takano","doi":"10.5511/plantbiotechnology.23.0721a","DOIUrl":"10.5511/plantbiotechnology.23.0721a","url":null,"abstract":"<p><p>Turfgrasses show a wide range of salinity tolerance. In this study, twenty wild turfgrasses were collected from coastal regions in Japan, and their species; evolutionary lineage; salt tolerance levels; shoot and root K<sup>+</sup>, Na<sup>+</sup>, and proline contents; and amounts of ions secreted from their salt glands were determined. Among them, eighteen turfgrass species were determined based on the internal transcribed spacer 1 sequences. All collected wild turfgrasses were identified as halophytes and were divided into two salt-tolerant levels. They maintained the shoot relative water contents and suppressed excess Na<sup>+</sup> accumulation in their shoots and roots and K<sup>+</sup> content homeostasis compared with rice, resulting in the maintenance of a higher K<sup>+</sup>/Na<sup>+</sup> ratio under salt stress. These characteristics must be part of the salt tolerance mechanisms. Among the four turfgrasses with salt glands, three selectively secreted Na<sup>+</sup> from their salt glands; however, interestingly, one secreted K<sup>+</sup> over Na<sup>+</sup>, although it still maintained a K<sup>+</sup>/Na<sup>+</sup> ratio comparable to that of the other turfgrasses. A significant amount of proline synthesis was observed in most of the turfgrasses in response to salt stress, and the proline content was highly correlated with the salt tolerance, suggesting its key role in the salt tolerance mechanisms. These wild turfgrasses with such diverse ion control mechanisms and proline synthesis profiles are useful materials for investigating the salt tolerant mechanisms and breeding salt tolerant turfgrasses.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"40 4","pages":"301-309"},"PeriodicalIF":1.6,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiotechnologyPub Date : 2023-12-25DOI: 10.5511/plantbiotechnology.23.0819a
Hiroaki Kisaka, Dong Poh Chin, Tetsuya Miwa, Hiroto Hirano, Sato Uchiyama, Masahiro Mii, Mayu Iyo
{"title":"Development of an efficient <i>Agrobacterium</i>-mediated transformation method and its application in tryptophan pathway modification in <i>Catharanthus roseus</i>.","authors":"Hiroaki Kisaka, Dong Poh Chin, Tetsuya Miwa, Hiroto Hirano, Sato Uchiyama, Masahiro Mii, Mayu Iyo","doi":"10.5511/plantbiotechnology.23.0819a","DOIUrl":"10.5511/plantbiotechnology.23.0819a","url":null,"abstract":"<p><p>The biosynthetic pathway of <i>Catharanthus roseus</i> vinca alkaloids has a long research history, including not only identification of metabolic intermediates but also the mechanisms of inter-cellular transport and accumulation of biosynthesized components. Vinca alkaloids pathway begins with strictosidine, which is biosynthesized by condensing tryptamine from the tryptophan pathway and secologanin from the isoprenoid pathway. Therefore, increasing the supply of precursor tryptophan may enhance vinca alkaloid content or their metabolic intermediates. Many reports on the genetic modification of <i>C. roseus</i> use cultured cells or hairy roots, but few reports cover the production of transgenic plants. In this study, we first investigated a method for stably producing transgenic plants of <i>C. roseus</i>, then, using this technique, we modified the tryptophan metabolism system to produce transgenic plants with increased tryptophan content. Transformed plants were obtained by infecting cotyledons two weeks after sowing with <i>Agrobacterium</i> strain A13 containing a plant expression vector, then selecting with 1/2 B5 medium supplemented with 50 mg l<sup>-1</sup> kanamycin and 20 mg l<sup>-1</sup> meropenem. Sixty-eight regenerated plants were obtained from 4,200 cotyledons infected with <i>Agrobacterium</i>, after which genomic PCR analysis using <i>NPTII</i>-specific primers confirmed gene presence in 24 plants with a transformation rate of 0.6%. Furthermore, we performed transformation into <i>C. roseus</i> using an expression vector to join <i>trpE8</i> and <i>aroG4</i> genes, which are feedback-resistant mutant genes derived from <i>Escherichia coli</i>. The resulting transformed plants showed exactly the same morphology as the wild-type, albeit with a marked increase in tryptophan and alkaloids content, especially catharanthine in leaves.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"40 4","pages":"311-320"},"PeriodicalIF":1.6,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural features of T-DNA that induce transcriptional gene silencing during agroinfiltration.","authors":"Emi Iida, Kazunori Kuriyama, Midori Tabara, Atsushi Takeda, Nobuhiro Suzuki, Hiromitsu Moriyama, Toshiyuki Fukuhara","doi":"10.5511/plantbiotechnology.23.0719a","DOIUrl":"10.5511/plantbiotechnology.23.0719a","url":null,"abstract":"<p><p><i>Agrobacterium tumefaciens</i> (<i>Rhizobium radiobacter</i>) is used for the transient expression of foreign genes by the agroinfiltration method, but the introduction of foreign genes often induces transcriptional and/or post-transcriptional gene silencing (TGS and/or PTGS). In this study, we characterized the structural features of T-DNA that induce TGS during agroinfiltration. When <i>A. tumefaciens</i> cells harboring an empty T-DNA plasmid containing the cauliflower mosaic virus (CaMV) 35S promoter were infiltrated into the leaves of <i>Nicotiana benthamiana</i> line 16c with a GFP gene over-expressed under the control of the same promoter, no small interfering RNAs (siRNAs) were derived from the GFP sequence. However, siRNAs derived from the CaMV 35S promoter were detected, indicating that TGS against the GFP gene was induced. When the GFP gene was inserted into the T-DNA plasmid, PTGS against the GFP gene was induced whereas TGS against the CaMV 35S promoter was suppressed. We also showed the importance of terminator sequences in T-DNA for gene silencing. Therefore, depending on the combination of promoter, terminator and coding sequences on T-DNA and the host nuclear genome, either or both TGS and/or PTGS could be induced by agroinfiltration. Furthermore, we showed the possible involvement of three siRNA-producing Dicers (DCL2, DCL3 and DCL4) in the induction of TGS by the co-agroinfiltration method. Especially, DCL2 was probably the most important among them in the initial step of TGS induction. These results are valuable for controlling gene expression by agroinfiltration.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"40 4","pages":"289-299"},"PeriodicalIF":1.6,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}